i

A Logical Analyéis of Information Systems:

static aspects of the data-oriented perspective

A thesis submitted by

Terence Aidan Halpin

BSc, BA, DipEd, MLitStud

in the

Department of Computer Science |

University of Queensland
for the degree of

Doctor of Philosophy

1989 July

‘Declaration

To the best of my knowledge and belief, the work presented in this thesis is
original, except where acknowledged below or in the body of the text. The
material has not been submitted, either in whole or in part, for 2 decrree at
this or any other university.

‘This thesis is largely concerned with a version of NIAM (27ijssen’s

Information and Analysis Method), which I have refined and extended As the
acronym suggests, this methodology was onvmally developed by Professor -
G. M. Nijsren. While several researchers have contribut=i to NIAM, ‘the
fundamental conceptual framework was principally the work of Professor
Nijssen and Professor E. D. Falkenberg.
. The thesis makes substantial reference to work discussed in the first
eleven chapters of the text Conceptual Schemia and Relational Database Design
(1989, Prentice Hall, Sycney), which Professor Nijssen and I co-authored.
Except for some of the exercise questions, these chapters, and. the exercise
answers, were written by myself. With 'respect to original contributions, the
followingz list summarizes the main NIAl enhancements due to myself which
are discus sed in the above ment1oned téxt:

_+ reordering of the steps in the Conceptual Schema Design Proceduare to
improve the meatment of subrynes and ‘mandatory roles;
- extensions to uniqueness constraints for nested’ fact types:
explicit distinctions betweer populations and types, and 1nteract10n 3
between real world and data base constraints; __—
» simplifiation of subtype treatment and removal of previous énomalies;
+ extensions to occurrence frequencies and label type constralnts
_» deeper analysis of reference schemes;
» simpler notations for equality, subset and exclas1on constraints;
- various constraint implication theorems; _
. additional constraint types (irreflexive, asymmet’n'c, Intransitive.
mandatory entity); ' ‘ ' ‘ o
» deeper analysis of derivation, and discussion of open/closed worlds;
+ additional results.concerning conceptual schema equivalence«;
+ schema transformation algorithm based on degree of overlap;
+ notations for constraints on relational schemas;
+ ‘addirg comprehensive constraint mapping to the ONF algorithm;

o

+ conceptual pre-¢ptimization to obtain a better ONF relational schema.

Terry Halpin

Brisbane, 1989 July

Acknowledgements

I am grateful to my supervisor, Professor John Staples, for his sage advice,
encouragement, kindness, and meticulous appraisal of earlier drafts of this
thesis. _ ' '
Professors G.M. Nijssen and E.D. Falkenberg have my thanks for many
st'imullating' discussions on NIAM. Apart from providing conceptual
foundations, their communication skills have helped me to appreciate the value
of examples and diagrams.

Peter Creasy has my .gratitude for reading and commenting on the second
draft of the thesis. I also thank Lee Lafferty for writing the printer driver
which facilitatéd the prdduction of the printed copy.

Finally, I thank my wife, Norma, for her love, support and patience.

Abstract -

It is widely accepted that mfoxmatlon systems are best specified first at the
conceptual level. This approach promotes correctness, clarity, adaptablhty
and productivity. For commercial applications, relational database systems
have become the most lmportant target systems for implementing conceptual
information structures. This is mainly because relational systems are simpler
to use, are based on mathematical foundations, and are now efficiently
implemented. Designing appropriate conceptual and relational schemas for
practical applications is a non-trivial - task.- The main objective of this
thesis is to provide a formal basis for reasoning about conceptual schernas and
for making design choices. '

* This thesis focusses on-the data-oriented perspective. of information |
system desigi:.. Most conceptual modelling miethodologies provide a graphical
language for the high level specification of conceptual schemons. Of these
graphical notations, the conceptual schema diagram language of NIAM
(Nijssen’s Information Analysis Method) is arguably the most intuitive and
‘expressive. Partly'because of these advantages, the designer may experience
difficulties in asc:3sing various properties of and relationships between NIAM

.conceptual schemas (e.g. satisfiability, implication and equivalence). To
help resolve these difficulties, we formalize NIAM conceptual schemas in terms
of formal logic, so as to prov1de a rigorous treatment of the formal semantics

~and proof-theory.- '

A thorough analysis of database reference schemes is provided, including
definite descriptions. Global and local aspects of schemas are distinguished,
SO as to support mo-ular spec1ﬁcat10n. Varinus results concerning desivation
rules are established, and NIAM is extended to take full advantage of the
semantice of numeric and lexical objects. Further extensions and
modifications to NIAM are introduced, motivated and formalized. '

Propeﬂ‘ es of, and relationships between conceptual schemas are treated
in depth, with particular attention to satisfiability, constraint implication,
and schema equivalence. One of the major contributions of this thesis is its
rigorous formalization of schema equivalence within NIAM, enabling
transformation . theorems to be precisely stated and formally proved. The
formalism is used to refine existing results and to establish new theorems.

The implementation of conceptual schemas in relational database systems
is examined, focussing on the mapping .of conceptual constraints into
relational cchemas and SQL systems in particular. One important application
discussed is the notion of conceptual optimization, whereby conceptual
schemas are transformed before being mapped down, in order to yield a more
efficient relational schema. _

Related topics for future research are suggested. -Appendices provide
background on formalization, examples of detailed:-formal proofs, and indicate
how scme of the results developed here may be -adapted to the Ent_ty- .
Relationship modelling approach

i;,_,‘:.:»‘__ﬁ;-{;;j:‘4;»_,-::;,‘.Vi‘.:.,. i S e B

| Contents

Introduction

1.1 Thesis scope and motivation
1.2 Summary of major contributions

1.3 Structural overview

Early enhancements to NIAM

2.1 Design sequence and subtyping
2.2 Constraints
2.3 Other enhancements

Formalization of information structures

3.1 The UoD and the knowledge base

3.2 Conceptual architecture of an information system
3.3 The formal language QL= |
3.4 The formal language KL

K

Specifying NJAM conceptual schemas in KL

4.1 Object types and predicates

1-1
1-3
1-5

2-1
2-7
2-11

3-1
3-7
3-9

- 3-13

4-1

42 Uniqueness, mandatory role and frequency constraints 4-5

4.3 Subtypes

4.4 Subset, equality and exclusion constraints
4.5 Homogeneous binaries and other constraints
4.6 Nesting

Further aspects of NIAM knowledge bases

5.1 Reference schemes and numbers

5.2 Global éspects

5.3 Derivation rules _
5.4 The database and definite descriptions

4-14
421
4-25
4-28

5-1

5-11
5-16
5-26

6 Conceptual schema modalities

6.1 Satisfiability of conceptual schemas
6.2 Constraint implication
6.3 Equivalence of conceptual schemas

7 Some applications to relational database systems

7.1. The ONF algorithm: constraint mapping
7.2 Conceptual schema optimization
7.3 Optimizing global conceptual schemas

'8 Conclusion

8.1 Summary ‘
8.2 Topics for future research

Appendices

I The nature and purpose of formalization
I Sample proofs v
III" Entity-Relationship modelling

Bibliography

Index of main acronyms and theorems

6-8
6-27

7-1
7-7
7-18

o

A-1

A4

A-11

B-1

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
FigUre 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figu're 3.6
Figure 3.7
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Fi.gure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 410
Figure 4.11
Figure 4.12
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4

List of Figures

An earlier graphical notation for subtypes

The notation now used by Falkenberg

it is implied that Man and Woman partitibh Person
An “exclusion constraint* spebiﬁed textually

An exclusion constraint specified graphically

A subschema for the real world '

A different subschema for the knowledge base
The parenthood relation -

A simple frequency constraint on an optional role

A needed unigueness constraint

Old and new notations for a pairwise subset constraint
A given UoD is a set of possible subworlds.

Evolution of the knowledge base

Components of an information system (plus user)

The general formal system KS -

A specific formal system

Each IC or.ground function term denotes one individual

The domain of objects is paﬁitioned into 5 classes
Hybrid ellipses are used only in the metatheory
Unary, binary and ternary predicates

The left diagram is'equivalent to R2 of Figure 4.2
Two examples of translating binaries into KL

An inter-predicate UC in terms of a natural join

A concise translation of a CS fragment

v Information conveyed by a subtype link

Two examples of lexical constraints

Example of an unnamed lexical subtype

Two examples of numeric subtype deﬁnitions

A subschema with five role-object constraints

Old (left) and nevs} (right) notations for nesting

An abbreviation for a simple reference scheme

*has' may be used as an abbreviated predicate name
The left diagram abbreviates the right diagram

Abbreviation of a composite reference scheme

2.3
24
2.5
2.6
26
2.7
2.7
2-8
2.9
210
211
3-3
3-5
3-7

3-8 -

3-8
3-12
3-16

Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15

Figure 5.16

Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Fiéure 5.22
Figure 5.23
Figure 5.24
Figure 5.25
Figure 5.26

Figure 5.27

Figure 5.28
Figure 5.29
Figure 5.30
Figure 5.31

Figure 5.32

Figure 5.33
Figure 5.34
Figure 5.35
Figure 5.36
Figure 5.37
Figure 5.38
Figure 61

Figure 6.2

Figure 6.3

Figure 6.4°

The left diagram abbreviates the right diagram
Abbreviating reference of a dimensioniess entity
Abbreviating an injective unit-based reference scheme
Summary of simple reference predicate translations
Indirect and direct comparisons with numbers
Defining alternative units for the same entity type

Length may be measured in mmorm-

" Concisely specifying a numerically referenced subtype

Two uses of the shorthand notation of Figure 5.12
An xdr- reference scheme .

An example of an xoi reference scheme

An alternative but usually inferior conceptualization
A generally inferior way to conceptualize lengths
Partitioning the desCribed objects into primitive types
Migration between "exclusive subtybes"' is allowed

A globally implied mandatory role constraint

A globally implied disjunctive MRC

An unusual example where some lecturers are "fazy"
Double eliipse notation allows mdltiple occurrences
Comments may be placed in braces

This describes the same UoD as Figure 5.24 |

A textual constraint

A derived predibate expressed in functional nbtation
Conditional derivation rules are marked ****
Constraints’on stored part of ** are not implied

An equality constraint with a whole predicate operand
Equivalent and usually preferable to diagram 5.30
The right-hand version is usually preferred -

Th'e target operand is a whaole predicate

Equivalent to but often less preferable than 5.33
Both schema diagrams portray the same UoD feature
A simple knowledge-base diagram

Translating a KB diagram

A reference diagram

Undesirable schemas may be trivially satisfiable

If m < nthen {rperp} is underhired

This is not strongly satisfiable on three counts

- Constraints marked *** are implied

5-3

5-10
5-10
512
5-12
5-14
5-14
5-15
5-16
517
5-19
5-19
5-20
5-21
5-22
5-23
5-23
5-23°
5-24
5-25
5-25
5-27
5-30
5-32
62
6-3
6-5
6-10

1

Figure 7.10
Figure 7.11
Figure 7.12
Figure 7.13
Figure 7.14
Figure 7.15
Figure 7.16
Figure 7.17
Figure 7.18
Figure 7.19

Appendix [II:

Figure 1
Figure 2
Figure 3
Figure 4

A first 'atfempt to schematize table 7.2

Fact types are now elementary

Theorem ESS1 has been applied

The final, optimized version

A conceptual schema before optimization

The optimized version of the previous schema
The relational schema obtained from Figure 7.15
Potential patterns for optimization’

The constraints enable substantial optimization

_This sub-optimal schema generates 4 ONF tables

Some attributes of Lecturer
Figure 1 translated into NIAM
A NIAM schema in need of optimization

An EER schema missing important constraints

7-13
714
7-14
7-15
7-16
7-16
7-17
7-22
723
725

A-M
A-15
A-16
A-16 -

l
1
]
%
|

J)

Table 2.1
Table 7.1
Table 7.2

List of Tables

The conceptual schema design procedure (CSDP)
Extract from a report about coal mines

An output report

2-1
7-3
7-13

1 Introduction

1.1 Thesis scope and motivation

In this section we briefly outline the scope and motivation of the thesis.
The next section summarizes the main contributions of this work, and the final
section of the chapter provides a structural overview. ‘

This thesis 1s largely concerned with the formal specification of
conceptual structures, and their mapping to relational database systems.
Although much of what is presented here has relevance to the design of
‘conceptual and relational schemas in general, the focus of the conceptual
modelling treatment is on NIAM (Nijssen’s Information Analysis Method), with
the relational code bein g givben in SQL (Structured Query Language).

For reasons such as cormrectness, claﬁty, adaptability and cost-
effectiveness, information systems are best specified first at the conceptual
level (1SO 1982). For commercial applications, relational database systems
have generally become the most important target systems onto which
conceptual information structures are mapped. This is mainly because
relational systems are simpler to use, are based on mathematical foundations
(Codd 1970), and are now efficiently implemented. Moreover, as Codd points
out, "the relational model ... extends itself naturally to distributed systems
ability to extract the information" (Rapaport 1988).

Designing appropriate conceptual and relational schemas for practical
applications is a non-trivial task. Each year thousands of research papers
appear in the literature dealing with aspects of this design problem. . The
main objective of this“thes.is is to provide a formal basis for reasoning about
conceptual schemas and for making' design choices which lead to efficient
relational implementations. |

- Many conceptual modelling methodologies exist (e.g. see Brachman 1988;
Jardine & Reuber 1984; Olle et al. 1988; Sowa 1988). Although the procesS-
oriented and behaviour-oriented perspectives of information system design are
important, this thesis focusses on the data-oriented perspective. One popular
way to design relational ‘data structures is to use entity relationship
modelling (ER) to specify the conceptual schema, map this onto a relational
schema, and then refine the table structure using normalization (e.g. Chen &
Dogac 1983; Teorey, Yang & Fry 1986). Although similar to ER modelling in

VUL e HHNeOlV Ve WU LU YU * “l i

some respects, fact-oriented modelling, as exemplified by NIAM, arguably
provides a simpler and stronger methodology (see Appendix 3. for further
discussion of ER). _ _

Comparative benefits of the fact-based approach have been cited elsewhere
(e.g. Kent 1986; Nijssen, Duke & Twine 1988). Natural verbalization of
examples in terms of elementary facts is the foundation of NIAM’s design
procedure. Its conceptual schema diagrams use only one data structure (the
fact type), allow a wide variety of constraints to be expressed, and are
easily populated for validation purposes.

Originally developed by Nijssen, Falkenberg and others, NIAM has evolved
considerably over the last few years. Papers by Falkenberg (1976) and Vermeir
& Nijssen (1982) illustrate an early form of NIAM which adopted the Binary

Relationship Model. To provide a more natural and direct connection with
human conceptualiiatidn, NIAM now allows relationships of any arity. For
historical background on the binary-relationship model, as well as an argument -
for retaining the binary-only restriction, see Mark (1987). A recent text
(Nijssen & Halpin 1989) provides a detailed introduction to the version of
NIAM currently endorsed by Nijssen.
 Givena (hopefully) sighiﬁcant set of output reports for a UoD (Universe
of Discourse), NIaM’s design procedure is used to specify a conceptual schema
" in which each fact'type is (ideally) elementary. For implementation in a
relational database system, a simple algorithm is then used to group these
fact types into relation types in "optimal normal form" (ONF). The number and
shape of tables so obtained can often be changed by transforming the initial
conceptual schema into another which is equivalent (or acceptably close to
being equivalent: we refine this notion later) before applymo the ONF
algorithm. Hence such transformations can help to produce a more efficient-
. relational schema which is still free of redundancy. Conceptual schema
transformations also play an important role in the merging of subschemas and
translation between different user views. '

Most conceptual modelling methodologies provide a graphical language
for the high level specification of conceptual schemas. Of these graphical
notations, the conceptual schema diagram langﬁage of NIAM is perhaps the most
intuitive and expressive. However, as pointed out by Levesque (1984), there
is a fundamental tradeoff between expressibility and tractability. The more
expreésive a language becomes, the gre‘ater the computational complexity of

- procedures for checking logical results (e.g. constraint implication, or

schema equivalence).

sec. 1.2 Summary of main contributions 1-3

Partly to keep the problem manageable, most research in database design
has restricted the set of constraints to functional and multi-valued
dependencies (e.g. see Beeri & Kifer 1986). Nevertheless, in practical
database applications the additional constraint categories depicted on NIAM
diagrams often occur, and hence should not be ignored. Partly because
NIAM schemas are so expressive, the designer may experience difficulties in
assessing various properties of and relationships between NIAM conc’eptual
schemas, e.g. satisfiability, implication and equivalence. |

To help resolve these difﬁculties, we formalize NIAM conceptual schemas
in terms of first order predicate logic, thereby providing a rigorous and
well-founded treatment of the formal semantics and proof-theory. Although
formalization of knowledge bases in terms of formal logic is not new (e.g. ISO
1982 appendix F, Reiter 1984), we are not aware of any previous
formalization of NIAM ‘in Iﬁredicatc logic. Our formalization in first order
logic supports the rigorous proof of substantial practical results (e.g.
schema equivalence). It also provides a simple and natural treatment of
various theoretical aspects (e.g. definite descriptions in the database
context). _ '

This logical framework is used to refine and extend NIAM in several ways.
New results are obtained in the following areas: reference schemes; derivation
rules; lexical and numeric aspects; further constraint categories; schema
satisfiability; constraint implication; schema equivalence and schema
. implication; conceptual optimization; and constraint mapping to ONF relational.
schemas.

Many of the problems addressed in this thesis ovérlap with the problems
identified by Gallaire, Minker and Nicolas (1984, p. 179) as needing continued

research. We hope that our work further demonstrates the fruitful interaction
of the disciplines of logic and database theory. | A

1.2 Summary of main contributions

The major research contributions of this thesis may be summarized as follows.
They are listed roughly in decreasing order of importance, from our
perspective. This does not correspond to the order in which the contributions

are discussed in the thesis.

sec. 1.2 Summary of main contributions ' 1-4

10

Formalization of NIAM in terms of first order predicate logic, thus

providing a well-founded model theory and proof theory.
A rigorous account of the notions of equivalence and implication between
conceptual schemas, as well as constraint implication, thus allowing

relevant theorems to be precisely specified and proved.

New theorems concerning constraint implication, and conceptual schema

equivalence and implication in NIAM.

A proper formal account of NIAM reference schemes, with particular

attention to definite descriptions and lexical/numeric objects.

Guidelines for optimizing the conceptual schema by transforming it to

“yield a more efficient ONF map.

Au gmventation of the ONF algorithm by adding comprehensive mapping of

conceptual constraints to relational constraints.

Separation of local/global aspects of conceptual schemas to support
incremental specification and general application of results. .

Deeper analysis of derivation rules, including specification and use of

semantics for lexical and numeric object types.
A rigorous account of conceptual schema satisfiability in NIAM.

Various early refinements and extensions to NIAM, including:

+ reordering of the steps in the Conceptual Schema Design Procedure to

improve the treatment of subtypes and mandatory roles;

. detection and removal of anomalies in the treatment of subtypes;

+ explicit distinctions between populations and types, and
interactions between real world and data base constraints;

+ additional constraint categories; '

* extensions to uniqueness constraints for nested fact types;

« extensions to frequency and lexical/numeric constraints;

+ simpler notations for equality, subset and exclusion constraints.

ey

T T

R TE

SR T

AR

i

Ry

SRR S

sec. 1.3 Structural overview _ 1-5

1.3 Structural overview

We conclude this introductory chapter by providing a structural overview of
the thesis content. A perusal of the Contents pages will help to fill in
further details of "the development. Please note that within this thesis,
unless otherwise specified, plural first person terms (e.g. "we", "our") are
to be interpreted as singular (e.g. "‘I“, "my™). ' '

As indicated in the thesis declaration, we recently co-authored a NIAM
textbook (Nijssen & Halpin 1989). For convenience, from now on we refer to
this work as NH&9. Inbchapter 2 of this thesis, we summarize some of our main
enhancements to NIAM as presented in NHS89, focussing on the examples cited in
the previous section under contribution 11. The early placement of this
material reflects the chronology of its development, and provides an
opportunity for informal discussion of concepts to be later formalized.

In Chapter 3, we define our usage of some general terms (e.g. "universe
of discourse", "knowledge base"), and discuss a simple conceptual architecture
for information systems. We then present the syntax and formal semantics of
the knowledge base language (KL) that will be used in our formalization. |
Generic axioms are specified to'parcition the domain of discourse and to
provide semantics for real numbers and character strings. Some basic theorems
are established from these axioms.

The next two chapters specify hov knowledge bases expressed in NIAM’s
high level grapi.c and tabular notation may be translated into sentences in
KL. Addi-tionally', several tevisions and extensions are made to improve

“various aspects of NIAM. Chapter 4 covers the basic issues involved. in

specifying object types, predicates and constraints.

Chapter 5 begins with a detailed analysis of reference schemes,
especially those involving numbers. It then examines those aspects of
conceptual schemas which require a global perspective. An examination of
derivation rules follows; as a result these rules aré partitioned into two
categories. Finally, a theory of definite descriptions is presented that
enables specific databases to be mapped into XL

Chapter 6 uses the formal framework to analyze various modal properties
of and relationships between conceptual schemas. A stronger notion of
satisfiability is introduced for schemas, and additional schema formation
rules are specified. = Constraint implication is then defined and several
theorems in this category are established. The final section of this chapter
deals with equivalence and implication between conceptual schemas. This is

sec. 1.3 Structural overview . - 1-6

probably the most important part of the whole thesis: by introducing
contextual definitions which provide conservative extensions, the notion of
schema equivalence is rigorously ‘g'rounded in first order logic, and several
important theorems are proved.

Chapter 7 examines various applications of the theory to the
implementation of conceptual schemas in relational database systems. To
complement the ONF algorithm, a procedure is discussed for mapping
conceptual constraints into relational schemas and SQL Systems in particular.
The notion of conceptual optimization is examined: to generate a more
efficient relational schema, a conceptual schema may be transformed before
being input to the ONF algorithm. Guidelines for selecting conceptual schema
transformations are discussed. ' ,

Chapter 8 summarizes the principal ideas in the thesis, and suggests
related topics for future research. '

There are three appendices. Appendix I provides some basic background
on formalization in general. Appendix II provides sample formal proofs of
some of the results discussed in the thesis. Appendix III briefly indicates
how some of our results may be adapted for use with Entity-Relationship

modelling.

2 Early enhancementsto NIAM

2.1 Design sequence and subtyping

In this chapter we briefly summarize some of our early enhancements to NIAM,
as incorporated in NH89. Many of these changes were also discussed in our
earlier works (e.g. Halpin 1986a, 1987, 1988a, 1988b). As well as having
practical advantages, these enhancements are a preparation for our later
formalization. In this section we focus on modifications we made to the NIAM
Conceptual Schema Design Procedure (CSDP) to overcome some problems with 4
the treatment of subtypes and mandatory roles. A brief sketch of NIAM is

included, but the reader unfamiliar with this methodology may wish to consult

NHS89 for further background.

Basically, NIAM is a method of designing information systems. Though it
includes some mechanisms for specifyingr information flows (information flow
diagrams)- and modelling an application’s behaviour (event triggers), its
emphasis is on the design of information structures. In particular, NIAM
provides a procedure (the CSDP) for specifying information structures at the
'conceptual level, as well as an algorithm (the ONF or "Optimal Normal Form"
algorithm) for mapping these conceptual structures onto normalized relational
schemas for implementation in relational database systems. The conceptual'

schema design procedure currently comprises nine steps (see Table 2.1).

1. Transform familiar information examplés into elementary facts,
and apply quality checks. : '

2. Draw a first draft of the conceptual schema diagram,
and apply a population check.’

3. Eliminate surplus entity types and common roles,

~and identify any derived fact types. ’

4. Add unigueness constraints for each fact type.

5. Check that fact types are of the right arity.

6. Add entity type, mandatory role, subtype and

_ occurrence frequency constraints.

7. Check that each éntity can be identified.

8. Add equality, exclusion, subset and other constraints.

9. Check that the conceptual' schema is consistent with the original
examples, has no redundancy, and is complete.

Table 2.1 The conceptual schema design procedure (CSDP)

sec. 2.1 Design sequence and subtyping 2-2 -

Prior to our work, the CSDP comprised 14 steps, in which subtypes were
determined at step 5, uniqueness constraints at step 6, and mandatory (total)
roles were specified at step 8 (Nijssen & Falkenberg 1983). In NIAM, unlike
maﬁy approaches to subtyping, a subtype is introduced only if the following
two conditions are satisfied: some role is played only by this subtype; the
subtype is definable in terms of other roles played by its supertype(s). So a
subtype is introduced for a particular role only if this role is optional for
its attached object type. Hence, contrary to the above ordering of steps, we
need to determine whether the role is optional or mandatory before we can make
any decision about subtyping. ’

Since the old order of the CSDP steps is inappropriate, we changed the
CSDP to have mandatory roles determined before subtyping. Partly to simplify
the specification of exclusion and exhaustion constraints among subtypes (see
later), we also demanded that uniqueness constraints and label type
constraints be determined prior to subtyping. By making some other minor
changes and combinations, we reduced the CSDP to 9 steps (NH89, p. 32). The
subtype introduction procedure was reworded to ensure that only well-defined
proper subtypes could be introduced (NHg9, p. 132).

Although we believe the new order of the CSDP steps is' appropriate for
learning the design | methodology, in actually using the procedure an
experienced designer may choose to reorder some of these steps or to perform
some steps concurrently. For example, the candidate elementary facts
verbalized at step 1 might in fact be splittable; rather than waiting till
step 5 to apply formal checks on these candidates, the designer may well
decide to consider uniqueness constraints (steps 4 and 5) concurrently at sfep
1 in order to minimize the chance of making such errors before actually
drawing a draft diagram. Knowledge of uniqueness constraints may also impact
on decisions about derived fact types (step 3). For example, if we agree that
constraints on derived fact types should also be derivable then cases
traditionally considered in terms of transitively implied functional
. dependencies are readily identified. Later constraints (especially mandatory
roles, subset and equality constraints) may also impact on decisions about
derivability.

Owin g to the work of Falkenberg, Nijssen and Vermeir, NIAM includes two
matrix procedures for determining the subtype graph (Verfr_leir & Nijssen 1982,
Nijssen & Falkenberg 1983). There has been a tendency in the NIAM literature
to suggest that all aspects-of a conceptual schema, including. subtyping, can
~ be determined from a significant set of output reports. However, as we

sec. 2.1 Design sequence and subtyping : 2-3

indicated in NH89 (p. 135), no set of reports can be significant with respect
to subtype definitions, since for any finite set of data there will always
remain an infinite set of such definitions which are consistent with the data.
The same comment applies to derivation rules. In cases of doubt, the UoD
expert must be consulted.

NIAM uses an arrow between nodes to indicate that the source node is a

proper subtype of the target node. During the course of its evolution, NIAM

‘has used various additional ‘notations to specify exclusion and exhaustion

constraints among subtypes. The notation used prior to our work is shown in
Figure 2.1. This scheme was dcvel'opea by Nijssen and Falkenberg (1983). In
cases 1 and 3 the dot indicates that, for each state of the knowledge base,
the populations of the subtypes must collectively exhaust the population of
the supertype. In cases 1 and 2 the fork indicates that the subtypes are
disjoint; in cases 3 and 4 the subty e populations may overlap.

eg@e°oe”ee°e

A 2 3: BUC=A 4:
{} BNC={} \

1:

BUC
BNC

Figure 21 = An earlier graphical notation for subtypes

To provide some intuitive support for this notation, it was argued that
separate arrows suggests different classification schemes, which result in
overlappihg subtypes. However, different classification schemes need not
overlap. For example, consider a chauvinistic universe of discourse in which
all high salary eamers are males. Now suppose number of children is recorded
only for female employees, and home phone number is recorded only for high
salaried employees. We now have two disjoint subtypes based on different

classification schemes (gender and salary).

A more serious problem with the scheme is its inability to fully specify
exclusion constraints for various cases when more than two subtypes are
involved. For example, suppose A has subtypes B, C and D, and types Cand D
overlap with each other but not with B. For instance, suppose we wish to
record some specific role for each of the subtypes Non-smoker, Pipe-smoker and
Cigarette-smoker, where the latter two types overlap. The scheme in Figure

2.1 does not extend to handle such cases.

N
N

sec. 2.1 Design sequence and subryping

For such reasons we abandoned the notation. In response to our
criticisms, Falkenberg (1986) now uses a notation in which exclusion and -
“exhaustion between two subtypes is specified by a circled dot and circled "X",
respectively, connected to the subtype arrows by dotted lines (see Figure
2.2). This notation is more intuitive, and is capable of specifying the cases
where the old notation failed. | '

BAG={} BAC={}

Figure 2.2 The notation now used by Falkenberg

However, this notation leads to unﬁdy diagrams. When the subtype graph -
has several nodes, there may be sd many e}:clusion and exhaustion markers
crowded into the schema diagram that the diagram is difficult to read. Since
a major reason for using a diagram is to provide a clear picture, we feel that
extensive use of this notation is 1ess than ideal. -

There are in fact two basic purposes served by a conceptual schema
diagram: to provide a concise means of quickly expressing most of the

conceptual schema; and to provide a simple picture of the application for
humans. With this in mind, a solution to the problem suggests itself. Just
as derived fact types must be fully specified by textual formulae, so must
subtype definitions. And just as constraints on derived fact types may be

omitted from the diagram since they are implied, subtype exclusion and
exhaustion constraint markers may be omitted since they are implied by the

subtype definitions and the constraints on the fact types involved in these

definitions.

. So we chan ged the CSDP to require that proper definitions be supplied for
subtypes when they are introduced, and to remove the requlrement for marking
subtype exclusion and exhaustion constraints. Another reason for reordering
the steps was to expose the connection between these implied constraints, the
subtype definitions and the current constraint picture. In rare cases, as
discussed shortly, other constraint types may be required to complete this
picture. In the absence of explicit constraint markers, it is important for
the designer 1o choose subtype names which suggest these constraints in the

sec. 2.1 Design sequence and subtyping ’ 25

mind of the human reader. As a simple example, consider the subschema shown
in Figure 2.3. For simplicity, the roles played by the subtypes are omitted,
and a high level language for subtype definition has been assumed.

has b Gender
(code) /{'m','t'}

Man =4¢ Person having Gender with code 'm'
Woman = Person having Gender with code'f'

Figure 2.3 It is implied that Man and Woman partition Person

The dot and arrowed bar respectively specify mandatory role and
uniqueness constraints (in combination they assert that each person has
exactly one gender). The constraint that Man and Woman are mutually
exclusive is implizd by the subtype definitions, together with the uniqueness
*constraint (each person has at most one gender) and the fact that 'm' is not
equal to ‘f'. The constraint that the union of Man and Worman exhausts Person
follows from the subtype definitions, the lexical constraint ({'m','f'}), and
the mandatory role constraint on has _gender. So there is no need to clutter
_up the diagram by marking these constraints.

Later in the thesis we formalize the notion of constraint implication and
provide a more rigorous discussion of such cases. The relevant theorems for
this case are IX2 and IE1 (see section 6.2). In setting out these theorems we
make use of Falkenberg’s notation, to pictorially convey the implied
constraints. For such abstract situations the notation is still of value. In
very rare cases, the notation fnay also be useful in a specific situation, as
we now discuss. ' '

Subtype exclusion and exhaustion constraints are always implied by the
subtype definitions and the constraints on the defining fact types.” In
practical cases, the constraints of relevance here tend to be just uniqueness,

. mandatory role and lexical/numeric constraints. One can irhagine rare cases
however, when exclusion or exhaustion constraints may need to be specified
directly. Since such a case may arise even if subtypes are not introduced, |
our general' solution to this problem is to specify these as rextual

constraints, written beneath the schema diagram.

sec. 2.1 Design sequence and subtyping ‘ ' : 2-6

Since such cases are hard to invent, we provide only one, rather
- pathological example. Figure 2.4 describes a chauvinistic company whc}se
employees hold the positionﬂ;of clerk ('c'), secretary ('s') or manager (‘m").
Here it is company policy that no women are managers. For simplicity we have
specified two of the cinploycc attributes directly in terms of codes, rather
than introduce Sex and Job as entity types with codes. The details of the
 textual constraint (symbolized below the braced comment); may be ignored. A

- formal treatment is given in later chapters.

5

{Iml |f|} {'Cl IS' !ml}

-7 . . V g == 1‘\
,'Sexcode}-—-, has Employeeg—— has ——-—(Jobcode‘,
\ s - {name) : ot

S

{ No wcmen are managers }
Vx~(x has_sexcode '{' & x has_jobcode 'm')

Figure 2.4 * An "exclusion constraint* specified textually

However, if subtypes are introduced (in NIAM this happens only if the
subtypes have specific roles to play), then Falkenberg’s notation may now be
used as a simple, graphic way of portraying these consiraints (see Figure
2.5). Tor an exhaustion case, add the constrainc that all men are managers.
We allow the graphic notation in such rare cases. In other cases, except for
discussion of constraint implication, the - graphic -notation for subtype

exclusion and exhaustion is best ignored.

f'e's! ')

lfl}

)
= -

] {lrpl

~

d
7 Ay
| Sexcode
4

. , .
v——\‘Jobcode,:

'

~ -

-

Woman =, Employee having Sexcode'f'
Manager =, Empioyee having Jobcode 'm'

" Figure 2.5 An exclusion constraint specified graphically

sec. 2.2 Constraints | : ' ; . 2-7 '

2.2 Constrainfs

In this section we summarize a number of .changes and additions that we
made to the treatment of constraints in NIAM conceptual schemas. These are
discussed more fully in INHB9. '

Although the conceptual schema is typically used to specify some real
world application, we may have good reasons for allowing the set of
constraints iniposed on the knowledge base (the formal model of the
application) to differ from the actual constraints in the real world.
However, some general results may be stated which restrict the possible
relationéhips between real world constraints and knowledge base constraints.
We discuss two such results here, by way of example.

Consider the subschema of Figure 2.6. For simplicity, reference modes
have been omitted. The constraints indicite that each person has exactly one
year of birth, and zero or more phones. The same phone may belong to more
than one person. Let us suppose that this constraint picture agrees with the -

real world.

~ was bornin

has. ——
-_—

Figure 2.6 - A subschema for the real world

Now for good reasons (e.g. privacy, space limitations) we may decide to
make the recording of birth year optional, and to record at most one phone
number for each person. So the corresponding subschema for our knowledge

base is as shown in Figure 2.7.
was born in

has

Figure 2.7 . A different subschema for the knowiedge base

Since we usually make the knowledge base constraints agree with those in
the real world, if there are any differences in the constraint pattermns these

sec. 2.2 Constraints oL 248

should be consciously determined by the schema designer. The following
guidelines need to be observed in specifying constraints on the knowledge
base.

1 For each fact type, its pattern of unigueness constraints needs to be at
' least as strong as that which applies in the real world.

2 If a role is optional in the real world, then it is optional in the
knowledge base; but the converse need not apply. o

Note that these guidelines are observed in our example. The first
guideline would be violated if we weakened the uniqueness constraint on
was_born_in. We do not wish to allow a person to have many birth years (at
least not in the same incarnation!). The second guideline would be violated
if we made it mandatory for a person to have a phone. We can’t record a
person’s phone if the person doesn’t have one (of course we can always change
the situation by demanding that péople must have phones in the real world; but
this is a different issue). For further discussion, see NH89 (pp. 77, 117). -

' In NH89 we introduced some new constraint categories. Three of these
(irreflexivity, asymmetry and intransitivity) relate ‘to fact types where at
least two of the roles are played by the same object type. The most common
a_ppiication is the homogeneous binary fact type. For cxamplc, the parenthood
relation is irreflexive (nobody is his/her-own parent), asymmetric (if x is a
parent of y then y is not a parent of x), and intransitive (if x is a parent
of y and y is a parent of z then x cannot be a parent of z). These
constraints are indicated by markihg "r", "as" or "it" near the predicate
(see Figure 2.8). Since irreflexivity is implied by asymmetry, the former

I
is parent of
L

constraint is omitted.

-

as,it

- 152

Figure 2.8 The parenthood relation
‘While. such constraints are standardly included in the set of relational

“properties discussed in introductory logic, they are often ignored in the
database context. This is a pity, since they can be implemented quite

sec. 2.2 :Constraints : ‘ B : R~ X o

efficiently (as discussed in a later chapter). For further discussion see
NH89 (pp. 183-191), and for a formal treatment see chapter 4 of this thesis.

One other constraint we introduced in NH89 (p. 195) is the "mandatory
entity" constraint, to cover cases where a specific object has to be present
in’ any | population ‘of its object type (e.g. a file-server node might be
mandatory for any network of nodes). We have now subsumed this category
under a wider class of constraints which we call "role-object constraints”.
These are discussed later (chapter 4).

We now mention one subtle change we made to the notion of occurrence
frequency constraints in NIAM. These are discussed in NH89 (pp. 149-154) and
formally defined in chapter 4, and may apply to a single role or a combination
of roles. In Figure 2.8, the mark "1;2" denotes a frequency constraint on the
second role of the is_parent of predicate (we no longer use the "1..2"
notation of NH89). This means that each person that appears in the population
of this role must appear there either once or twice (each person has at most
two parents). : S

Nijssen and Falkenberg (1983) instead defined an occurrence frequency to
be the number of times an object in the attached object type could play that
role. Their definition has two unfortunate consequences. Firstly, it
introduces a dependence between mandatory roles and frequency constraints.
For example if a role is optional the lower bound on its frequency must be
zero, but if the role is-mandatory this lower bound must be above zero. . With
our approach the two kinds of constraint car_i be treated independently.

Secondly, their notation is less powerful, since it cannot be used to
specify frequency constraints on optional roles when the lower frequency bound
exceeds zero. For example, using our notation the "2" mark in Figure 2.9
specifies that if a person has a phone at all, he or she must have 2 phones.
This constraint cannot be expressed in the old notation.

=l)

Figure 2.9 A simple frequency constraint on an optional role

was born in

For such reasons we changed the deﬁmtron of the term ' occurrence
frequency constraint” to the definition given here. This also made it easier

sec. 2.2 Constraints © o 240

/
N

to specify general constraint implication theorems dealing with frequency
: constraints (see NH89, pp. 152-3, as well as section 6.2 of this thesis). We
have since found another version of NIAM in which a definition of occurrence
: frequency equivalent to ours is used (Mark, 1987). ,

% v In NH89 we introduced a number of extensions to standard NIAM

constraints. For example, we allow that some of the roles spanned by an
inter-predicate uniqueness constraint may belong to an objectified relation

type. For example, the circled "u" in Figure 2.10 captures the constraint
that for each subject and position there is only one person enrolled in that
subject who achieves that 'p.osition. The rounded rectangle around the
enrolled_in predicate is our new notation for indicating nesting: it
implicitly specifies that this predicate is many:many. The objects playing
the achieves role are (Person,Subject) pairs nested in the enrolment fact
'type. We discuss nesting in detail later. For further discussion on this |
example using the old notation see NH89 (pp. 88;9). |

enrolled in

A
achielves :

i . Figure 2.10 A needed uniqueness constraint

Unless such constraints are allowed, there is no way of formally
support.ing any notion of = equivalence for. the nestirig/ﬂatteriing
] transformations, since some uniqueness constraipts in the flattened version
could not be expressed in the nested version. ~We discuss the general
formalization of schema equivalence in detail later in the thesis.

We also extended the varieties of "label type constraints" to include
lexical and numeric subtypes of several forms (e.g. see NHS89 pp. 111-3).
-However, since we later (section 4.3) provide an improved and more
-comprehensive treatment of this area, we say no more about this now.

- We conclude this section by noting some simplifications we made to the
'*notatibns for subset, equality and exclusion»constraints‘. The new notatiohs
are discussed in NHS9 (pp. 171-81) and are formally defined later in the
-thesis (chapter 4). Basically, we use a dotted arrow for a subset constraint,
unning from the subset role to the superset role.” For an equality constraint

sec. 2.3 Other enhancements 211

there are arrow heads at both ends. Apart from being simpler, this notation
suggests the close connection between a subset constraint and a conditional.
Exclusion constraints are specified by an "X" as usual, but without the
circle (unless there are more than two operands). When the roles are.
contiguous, the dotted lines should meet at the junction point (this avoids
the need for role connectors at each end). Figure 2.11 gives one example of

the old versus the new notation.

L]
|-

Figure 2,11 Old and new notations for a pairwise subset constraint

2.3 Other enhancements

In NH89 we introduced several other enhancements to NIAM. These include a
deeper analysis of reference schemes, an overlap algorithm for selecting
schema transformations based on the kind of relation overlap, new results for
constraint implication and coiceptual schema equivalence, high level notations
for constraints on relational schemas, augmentation of the optimal normal form
algorithm by constraint mapping, and conceptual schema optimization to
provide a more efficient ONF map.)

Some of these ideas have now been substantially reworked and improved
(e.g. our treatment of reference schernes and schema cquivalchcc). Moreover,
these contributions are best appreciated once a formal groundwork for them has
been set out. Hence, rather than examining these matters at this stage, we
postpbne their discussion until our basic formalization of NIAM has been
presented. The next three chapters provide this formalization.

3 Formalization of information structures

| 3.1 The UoD and the knowled‘ge: base

In this chapter we provide a framework for formélizing infermation structures;

“the concepts and definitions presented are' used later to establish ‘various
results, espec1a11y theorems about constraint implication and schema
equivalence. In this section we prov1de an intuitive explanation of some
fundamental aspects of our approach to information systems. A more formal
treatment is provided in later sections. We use the term “information
systems" in a generic isense’ to include not just traditional database systems
but more advanced systems, such as knowledge based systems".

Though they can be treated forrnally, information systems are constructed
for pragmatic reasons. To begin w1th, there is a rask that is required to be -
carried out with the aid of a cofnputer system, e.g. handling of academic
records. The complete specification of the task/problemy/application may
involve data; process and behavioural aspects (see Olle et al. 1988). We
ignore the latter two perspectives for this. thesis, and assume that the
problem is solved if the system can output on request any information
perceived to be relevant. '

Strictly, and conceptually, the 1nformat10n system (IS) stores sentences
which are interpreted by the user as expressmc information. We assume the
reader is familiar with the notion of external, conceptual and internal levels
(e.g. see ISO 1982). Our dlscussmn remains at the- conceptual level unless
otherwise mdlcaLed '

Such 1nfolmat10n involves a fixed area of interest known as the umverse
of discourse (UoD). In the research literature, the term "universe of
discourse" has many meanmcs (see,-e.g., 1SO 1982; J ardine & Reuber 1984).
Our usage is now explalned. The UoD is typicaﬁy specified with the hope of
modelling a very restricted structure within the physical universe (e.g. a
business environment), but may specify an abstract world (e.g.- Euclidean
geometry) or an imaginary world (e.g. Wonderland).

To clarify our intuitive usage of the term "UoD" we make use of the
notion of possible worlds. The nature of possible worlds and- the status of
transworld identity of individuals are still areas of philosophical dispute.
Possible worlds are-k COnstrﬁed variously as maximally consistent sets of

~ sec. 3.1 The UoD and the knowledge base - : ©32

propositions, maximally possible states of affairs, alternative conceptions,
and so on. Loux (1979) and Haack (1978, pp. 170-203) present useful overviews
of the central issues. Huc»hes#,and Cresswell (1968) provide a standard

ntroductlon to modal logic, while Bradley and Swartz (1979) give an extensive -

account of modal proposmonal logic. We make no attempt here to solve the

i phllOSOpthEﬂ problems of posmbﬂm semantics.

To avoid circularity, the term "possible world" is understood throucrh

paradlgm examples. One possible world is the real world. The term "real

“world" or. "acz’ual.wor_ld" is usnally taken to refer to our whole universe,

including past, present and future. 'One might think of the real world as a

space-time continunm. Besides the real world there are infinitely many worlds

which might have been, e.g. a world in which Expo88 was held in Sydney rather

than Brisbane.

Some worlds are. impossible, e.g. a world in which Expo88 was held in
Brisbane but was not held in Brisbane. We use p0531ble 1n a logical rather
‘than a physical sense, e.g. it is logically -possible for us to float in the

air even though our physmal laws might prevent this..
A subworld may be "part" of a world, e.g. the space-time worm Wthh is

Australia in the tw‘enue_th century. More generally, a subworld_ may be
pictured as a world viewed through a 'relevance filter” which removes
unwanted detail. Over the lifetime of the applicatipn, a particular subworld
is modelled in the information syStem. ‘At any point in this_ lifetiz-e, the

_1nforrnat1c}1 systern prov1des a "glimpse" of the subworld. Each subworld .

ghmpse portrays a set of individual objects instantiating certain properties

‘and relations. . _ :
For a giveu task we associate exactly one UoD. UoDs for different tasks
may overlap. We think of the UoD essentially as. the structure of interest.
Hence, extensionally, we may regard each UoD as a ser of possible subworlds.
For a given' UoD, each subworld -must admit only certain types of individual.
For example, suppose the task is simply to maintain details concérning the
years in which scientists ‘were bomn or died. In this UoD each individual is

either a scientist or a year: there are nc cats, computers, languages etc.
Secondly, eacii subworld must admit only certain predicates. We use the

term "predicate” to mean "property, or relationship type". In our example
" UoD, the predicates denoted by the predicate symbols "was_] born_in" and
“"died_in" are the only ones admitted. Thirdly, each subworld must satisfy

certain constraints on its predicate populations (e.g. each person was born in

only one year). Somie predicates may be derived from others by means of

sec. 3.1 The UoD and the knowieage pase : _ oo

derivation rules. For example, giver any 1nd1v1dua1 X, X 1s _dead if and only
if there is a y such that x died_i iny.

A subworld is factual if and only if each relevant atomic: proposmon-
true in it is also true in the actual universe; otherwise the subworld is
_ ﬁ.ctz"onal.. We take a proposition to be what is asserted when a declarative
sentence is uttered. Propositions are true or false but not bbth;_ however in
deciding whether a subworld is factual we exclude irrelevant propositions,
i.e. those not "of interest” for the UoD. An atomic proposition predicates a
property or relationship on a sequence of individuals. For a given UoD, all
its member subworlds are possible but some of these may be fictional. Fi gure
3.1 111ustIates thls classification, with rectancrles depicting some sample

subworlds.

impossible
subworlds

possible
subworlds

UoD

factual
- subworlds

Figure 3.1 A gi;ien UoD is a set of_possiblé subworlds

Suppose the task is to maintain birth and death details about scientists.

In some impossible subworld, Einstein died in 1955 and did not die in 1955.

- In some possible, fictional nonUoD subworld Einstein invented Pascal. In some

factual (and hence possible) nonUoD subworld, Wirth invented Pascal. In some

fictional subworld within the UoD, Einstein died in 1960. In some factual UoD

subworld, Einstein died in 1955. _ _ | ‘

Note that truth in a subworld does not imply actual truth (i.e. truth in

the real world) In some fictional subworld, the actually false proposmon
that Emsteln died in 1960 is assigned the value true.

SeC. 3.1 11g VUL aiiu uic DSV Ic Uy e

In possible world semantics, it is' usually agreed that in each possible
world every proposition is true’or false. In stardard closed world semantics
" a proposition is false if it is not asserted to be true. In our subworld

semantics every proposition of interést is true or false in each subworld. If 1

a proposition is not of interest, it does not concern us ‘what its truth value
- might be: we simply ;eject it from consideration. Pragmatically therefore_' we
have no need to decide whether propositions outside the UoD (e.g. Einstein was
a physicist) should be asSiGned "false”, "unknown" etc. |
Constraints imposed on the UoD may allow some real world instances
of a relevant predicate to be ormtted (e g. we might decide to record only one
phone number for each person, even though in the real world some people
have more, and we might make recording of a person’s birth year optional even
though each person has a birth year).
For a given UoD there may be several factual UoD subworlds This might
arise because the UoD subworlds relate to different real subworlds e.g. the
same academic record system might be used in two different umversmes Note
that we consider the UoD as a structure, rather than a structure instance
(le. a subwoﬂd). Two universities may have the same academic recording
'sn'_ncture, even though many' of their individuals (e.g. students) differ.
Even if the real subworld is the same, UoD subweorlds may differ accordmg
to how complete their-details are. For example, suppose the UoD allows that
_people may play zero, one or more spot-ts, and that in the real world Ann plays
tennis and hockey.. In one factual UoD subworld we mi ght record no sport for
Ann in another only tennis, in another only hockey, and in another both
tennis and Lockey.
For a given application there will be one UoD subworld that is factual
and complete: this is the task subworld. Given the UcD specification, the
information system can ensure that the particular subworld being described is

consistent with this specification. - However it is beyond the scope of the

system to ensure that this subworld is factual or that it is complete: these i
requirements can only be enforced by the humang who s2ply the informationto |
the system.) !
Being a ‘set, the UoD is fzxed it does not chan ge w1th time; it does not
have states. We also regard the task subworld as fixed. However, what is
asserted of this subworld typically does change with time. Informally, we may
regard the information system to include -a- "varset" (set variable) of
sentences known as the knowledge base (KB). At any time, the sentences in

KB are taken to assert propositions about the task subworld. Ideally, these

sec. 3.1 The UoD and the knowledge base 4 - 3-5

propositions will be true; and in-this sense the KB records the system’s
éxplicit, "knowledge" about- the task subworld. v_As explained in the next
* section, further knowledge ma;_be inferred by applying logical inference to
the rules and facts stored in KB. | , , ,
, Thc knowledge base consists of a (fixed) set of sentences known as the
conceptual schema (CS) and a varset of sentenccs known as the database (DB).
The CS delimits the UoD, and the database viewed across time determines Which
.of the UoD subworlds is chosen to model the application. While practical
' sYstenﬁs sometimes permit the CS (and hence UoD) to evolve, along with the
user’s perception of what oughi'to be the task, for the purposes of this
- 'thé_sis, we assume the CS and UoD are stable. '
Tre knowledge base then is the union of the conceptual schema and the
- database. While this definition is also used by some other reséarchc_rs, the
‘term "knowledge base" is sometimes used in other ways (e.g. some researchers
exclude the database from béing part of the knowledge base).
Typiéally, each seuntence in the databaée is an elementary fact: foughly,

this is an instantiation of an irreducible logical predicate, e.g. "the Person
“with surname ‘Halpin® seeks the Degree with code ‘PhD’". During the lifetime
‘of the information system, one particular UoD subworld (ideally one matching
the task subworld) is described by the system. However, from the point of
view ‘of humans interacting with the information system, only some of this
description méy' be available at any given time. .

‘ At any time, the database expresses the current elementary assertions
about the application. Besides current events, these assertions ma: 1y concern
‘past events (e.g. sales figures for iast two years) and (anticipated) future
‘events (e.g. airline flight timetable for next week). The database may grow
or shrink when an update occurs...-An update may add facts, delete facts or
both. A simpliﬁed.picturebof an. evolVinc knowlieldce base is provided by
qure 3.2. Here the vertical dimension measures the total number of
sentences stored in the XB. The CS component is stable but the DB component
goes through a series of chan g.es as it is updated (typ1ca11y through compound
transactions). | '

Nr sentences

time

Figure 3.2 Evolution of the knowiedge base

" sec. 3.1 The UoD and the knowledge base o - 3-6

The truth value of a proposition does not change with time. Assuming
invariant reference, some sentenceS' express the same proposition regardless of

their - time of utterance. - These include sentences expressing analytic

propositions (e.g. A square has 4 sides"), and event descriptions which

explicitly state the time of the event (e.g. "Einstein was born in 1879").

Time-dependent sentences may express different propositions depending on

their time of utterance, e.g. "Reagan is president of the USA" uttered in 1988

. expressed a true proposition, but’if uttered now would express a false

' propos1t1on.

When a contingent, time- dependent present-tense/past-tense sentence s is

asserted at time ¢ (e.g. when added to the database) we take it that this

- sentence is short for: "At/(At some time before) ¢ it is true that s". With

this understanding, database ‘states. may. be indexed to the1r time, and the ..

- atemporal UoD subworld cannot result in conu”adlctory proposmons (e.g.

"Reagan is pres1dent of the USA at t1rne tl " does not contradict its

replacement “Bush is president of the USA at time t2")

Tne CS is intended to precisely define the UoD by specifying what counts

asa UoD subworld. Any subworld is determined by the set cf relevant atomic .

' propositions true of it. Given a standard interpretation of words, and iime

~ indexing of sentences, the UoD subworld described in an information systemis

" determined by a knowledge-time worm (for a roncrh two-dimensional picture

- of such a worm, consider the region under the graph in Figure-3 2) Different

*4 knowledce time worms describe different subworlds

Hence for a given UoD, the CS specifies not only what database states are

; p0551b1e but also what transitions between database states are p0351b1e For

example the transition from a marital status of "divorced” to ' 'single” iight

“be ruled out. However, while we have set up our framework to include this
dynamlc aspect, for this thesis we ignore rransztzon constraints. For rnany

apphcat10ns, transition constraints are rare, and can be trivially added and
'tgnplernented; in some cases these can be expressed by means of behavioural

' aspects (triggers).
In cases where the role of time is central, or where previous information

states are to be preserved, more complex approaches may indeed be required

;'(e_.g. ternporal logic for conservative databases). A wealth of research

-literature on the dynamic aspects of knowledge bases exists, and a serious

study of these matters is beyond the scope of this thesis.

-sec. 3.2 Conceptual architecture of an information system _ : -1

3.2 Conceptual architecturé of an information sysfem.

Conceptually, we take the .-arcﬁitécture of an. irifoimatiofr; system to ‘be as
portrayed in Figure 3.3. Arrow heads indicate the direction(s) of information

flow. - All communication between the user(s)ﬁnd the system is via the

conceprual information processor (CIP) For a g1ven apphcemrw users enter

the speuﬁc conceptual schema, update the database, ard request information.

‘Hence the CIP has three funcucms Cs filter; update’ filier; information
- supplier. . ' ' o '

Genzric Formation Rules y
Conceplual Schéma —— COnceptual
’ — : : Information | | e /ﬁr
Database = e # Processor
- o ' i - user
. Inference Rules

Figure’ 3.3 . -Components of an information system (plus user)

To b» accepted, user messages must corform to the formal information
»yftpm language (ISL) used for all applicatioris. This is composed of a

' gem,m, conceptual schema lancuaue (CSL), a generic database update larionsge

(UL) and a generic query lancuace (GQL). UL includes the rules for asserting

“facts (FAY.). We focus our attention on the generic knowledcc base language

KL, which is simply CSL U FAL. The formation rules of KL are detailed later.

The reader who is unclear about the meaning of terms such as "% ’rmatlon

vrules "axioms", ‘“inference rules", ‘“nroof t.heory, "model theoxy)

mezalaub.‘qae "consistency”, "soundness", "completeness”, "decidability"”,

1" o1

independence”, isomorphism" etc. shou 11d consult Appendix I, which provides

Televant background concerning the nature and purpose of formalization.

The folloving componerts of the information system ate the same for all

- applicdtions: generic formation rules of ISL; generic CS axioms; inference

rules. The CS consists of generic axioms and specific axioms. The generic CS

- axioms include the relevant axioms of logic, mathematics and NIAM. We
~discuss these later. The ‘specific CS axioms are divided into three groups:

~ stored fact type declarations; population constraints; and derivation rules.

Among other things, the fact type declarations restrict the symbolic names

(e.g. predicate names). When the specific CS axioms are entered by the

designer the CIP uses these restrictions together witli the CS formation rules

- to aceept or reject the input.

sec. 3.2 Conceptual architecture of an information system ' . 3-8

Once the CS is_éccepted, it is used (with‘xthe' UL rules) by the CIP to
detcrrrﬁne whether an update request from the user is bto be accepted. -

When the user issues a well formed request for information, the CIP
arches the knowledce base for the answer. If the relevant- information is
rot stored, the CIp applies its inference rules in an attempt to denve the
quired information. * For example, using Modus Ponens and Universal
Instantiation as 1nference rules, the CIP may deduce that Pat is- cancer~prone.
from the fact that Pat smokes and the derivation rule that if anfobJect smiokes
Lt is cancer prone. : , 7 Qurie.

- The same proposition rnay be expressed by deferent sentences. Given that

all KB sentences must conform to XL, this narrows down the possibiities.

However, different designers may choosevvoca_bularies which differ in their CSL

names. For example, designers may choose different symbols for the same

predicate (e.g. - "is_empioyed_byf' instead of "works_for’;‘) or may choose to

perceive certain aspects of the UoD in terms of predicates and objects instead
6f ‘just predicates (e.g. "has _’gendercode 'm’" instead of "ig _male"). We

return to this issue later when defining 1mp11cat10n and equlvalence between
different conceptual schemas. : .

A formal system consists of a formal language together with a deductive

apparatus composed. of axioms and/or inference rules. As our interest is in

formation structures, the general formal system we wish to dlSCUSS 1s as set

out in qure 3.4, We call this "KS" (Knowleo ge System Je

Language: KL _ ,
Axioms: generic CS axioms
Inference rules: MP, etc.

Figure 3.4 The general formal system KS

For a given application, a specific formal system is obtained by a_dding
peciﬁc CS axioms for that UoD (see Figure 3.5). Different designers might
devise different specific formal systems S1, S2 etc. for the same application.

uch systems can differ only in the specific CS=xioms.

Lariguag»; - KL

Axioms: generic CS axioms
-specific CS axioms

Infererice rules: MP, etc.

Figure 3.5 A specific formal system

sec. 3.3 The formal 'Ianguage QL= | : 4 v-o

One might consider a further level of specific formal systems by addincr
the facts expressed in a database state as ax1oms. However, we are primarily
interested in examining the connectlons between two different conceptual
schemas, say CS1 and CS2. Such connect1ons can be explored procpf—
theoretically, e.g. within the genefal system KS are the'speciﬁc axioms of
cs2 deducible from those of Cs1? These-connecticns can also be ex plored from
' the viewpoint of model theory, e.g. is every model of Cs1alsoa model of CS2?7
Intuitively, knowledae-tlme worms are closely related to models.

- Two major concerns for thlS chapter and the next three chapters are to

- spell out the details of the KS system, and to capture our model-theoretic
-mtumons within a formal framework. APanle I includes some. general'
~ Teasons as to why formalization is of importance. Within this thesis, the
main motivation for our formalization is to provide a rigorous framewo*" for
estabhsmnrr whether two conceptual schémas are equwafnt -

3.3 The fonhallanguageiQL_'—' |

~In this section and the next we diécuss the syntax and formal semantics of our.
- knowledge base language KL, which is based on first order predicate calculus
~with identity and functions, but tailored for knowledge base work. Our
general approach to predicate calculus is sef out in Halp.in &_Girle (1981);
further background on identity, functions and n&etalogic are provided by Rennie
and Girle (1973) and Huster (1971). o |
Fonnaliz“ioh of kiiowledge bases in terrns of ﬁrst order 1og1c has been
done before (e.g.180.1982 Appendix F), but we believe our approach provides a
more natural framework, with clear links to NIAM concepts. The only other
work we are aware of which seeks to provide some "formal" basis for NIAM uses
the NIAM language itself (e.g. Leung 1988) or RIDL (Meersman, 1981) or Prolog
(McGrath, 1987). To our Lnowledge our formahzatlon is the first wh1ch
provides a rigorous model theory and proof theory for NIAM.
- First we summarize. QL_— (Quantification Language with identity), a basic
predicate calculus language. QL= is like an assembly language: it is powerful
enough to express all our knowledge base requirements, but is often awkward to
work with. -‘We later introduce notational variations and define higher level
constructs until we arrive at a lancruacre which fac111tates ‘the textual .
translatlon of NIAM diagrams.

sec. 3.3 The formal language QL= o . ' 3-10

Though spartan, QL= is not parsimonious, e.g. ~ and & would suffice for
the propositional operators, and functions could be expressed a$ many:one
- predicates. Propositional variables are_excluded since there is no need for

them. The propositional an'_d'individual constants are used only in formal.
proofs; ‘In the foliowing syntactié definitions, a seque'nce' of one or more
space characters is used as a metasymbol for "or" (instead of "I") and
nonterminals are italicized. ” '

propositional constant: TF ,

individual constant (IC): abcdeaya, a,..

individual variable (IV): X ¥y Z WV U X x1 Xy o

-function variable (FV): i g” hn " £, . . (where arity n 2 1)
function constant (FC): - (no FCs in QL=)
function symbol: “FVFC 4 o
predicate variable (PV): FnoG" HY F" R (whera arity n°2'1)
_predicate crnistant (PC): =2 ' '
predicate symbol: ~ PVPC

quantifier -~ -~ V3

parenthesis: ()

propositional operator: ~ & V3 =

Piopositiohal, predicate and function constants have special axioms or
rules which apply in all interpretations. In QL=, only three such constants
(T, F, =°) are used: we explain these shortly. Terms and w}fs (well formed
formulas) of QL= are definad as follows. ’

Term formation rules:

Basis clause: - Each IC and IV is a te"in.

Recursive clause: ~ Iffis an n-ary function symbol and i,. .t areterms -
(not necessamy distinct) then f(t;,..,t,) ns aterm.

Terminal clause: If t is a term, it is so because of the above rules.

WIf formation rules:

" Basis clauses: T and F are wifs

If R is an n-ary predizate symbol and t,..t, are terms '
. : (not necessarily distinct) then Rt,.t isa wff
Recursive clauses: If @ is a wif, s0 is ~t

' If ¢-is a wif and v is an IV, then Yva rsawff

If @ isawff and vis an IV, then Jver is a wif

If o and 8 are wifs, so is (o & f)

If & and B are wifs, so is (@ V By

If & and B are wifs, so is (a - B)
. : _ If & and B are wifs, sc is (o =)
Terminal clause: If @ is a'wff, it is so because of the above rules.

sec. 3.3 The formal iahguage QL= o 3-11

For our purposes we restrict wifs further to closed w;‘j‘s ie. Wifs in
which each IV is bound to'd quant1fier ‘Closed wifs are said to be sentences.

The standard semantics of a set of QL= sentences is now summarized. A tuple -

is a sequence of items, and a relation is a set of tuples. - An n-ary function

is an n+1-ary relation in which there is only one tuple with the same first n

items: these n items are said to be the arguments of the function and the

n+1th item is the value of the function.

An interpretation 1 of a set of QL= sentences comprises a non-empty

'-domam D of mdzvzduals (each of which is named by a constant), together w1th

the followmg assignments:

. The proposmonal constants "T* and “F" are respectlvely assigned the .
. truth values True and Faise.
‘-' - Each IC is mapped onto one individual in D.
. Each predicate symbol is mapped to a re_latlon over D.
» The predicate constant *=2" is interpreted as the identity relatior.
» Each function symbol is mapped toa function with arguments and values in
' D. : .
. The operators ~, & V, - and = are given their usual truth-functional
interpretations (negation, conjunction, inclusive disjunction, materiaf
implication and material equivalence respectively).
_qua.tifiers are interpreted by expansion ori D, e.g.

" .3xF'x-= FlavVFbv.

vxFx = Fla&Fb &..

]

it

An interpretetion I of QL= is a mcde! of a set of QL= sentences iff each
sentence in this set is true for I For a more detailed treatment of these

-standard semantics see Hunter (1971 pp. 141-9).

A formal system comprises a formal Janguage and a deductive apparatus.

A deductive apparatus for QL=may be pfoVided inmany ways. Forexample, the

propositional part may be axiomatized by the three axiom schemats (@-(B-a));
{(a= B~ (@B (7)) (~~oz—>oz) together with definitions for &, v and =in
1_.terrns 0f - and ~, and the inference rule AA: If @ and (a-8) are theoreras so is
.“The AA rule (Affirming the Antecedent) is often called MP (Modus Fonens).
zhe predlcate component without 1dent1ty is usually axiomatized with at most
four axiom schemata (e.g. see Hunter 1971 p. 167), and the identity : relation.
ay be axiomatized by two rules (reﬂ\,x1v1ty Vx=*xx) and subst1tut1v1ty of
identicals (si). SI says that if =%x;, and P(y/x) is like x except for
aving free occurrences of y in zero or more places where x occurs free in ®x,

hen each closure of ®x - ®(y/x) is a theorem (e.g. see Hunter 1971 pp. 196-

sec. 3.3 The formal language QL= : : 3-12

- However, instead of the axiomatic approach, we set out "proofs" in aL= by
using a technique we call deduction trees. Deduction trees are essentially

_semantic tableaux, with the added freedom to evaluate branches more swiftly by -

- using natural deduction at any stage. Our basic treatment of semantic
tabléaux is set out in Halpin & Girle (1981). For the identity relation we
add SI (substitutivity of identicals) and the rule that any branch with a node
of the form ~="t,t, may be clos=d where t, and t, are ground terms (e.g. see
Rennie & Girle 1973, pp. 187-8). A ground term is an IC or a function term
whose arguments are ICs or ground terms, e.g. - "a", "f'(@)", "g(a,f'(b))".
Ground terms are also called closed terms. '

While our proofs and counterexample generation are based upon the
predlcate calculus for QL= knowledge bases must conform to addmonal amoms
and formation rules, as discussed later.

I principle, each knowledge base state can be expressed as a set of
sentences of QL=. Informally, an interpretation of a KB state corresponds to
an atemporal glimpse of a possible world, with' the domain of the
interpretation being the set of objects (individuals) perceived in that
glimpse. Notice however, that QL= is:untyped. Each individual constant or
ground fhnctio_n term denotes one individual. Different ICs and different
‘ground function terms may all refer to the same individﬁal This situation
may be port"aved by an occurrence-diagram as in Flvure 3.6. |

Ground terms - -~ Domain of individuals -

denotes-

Figure 3.6 EachIC or ground function term denotes one individual

_ The untyped sunphsuc reference scheme of QL= is awkward for humans

_ since it ignores the natural perceptual tendency of humans to- cateconze__

“objects into types (e.g. Ferson, Department), and its names are artificial and
forgettable (e.g. "F?ab" might be used for "The person with name ‘Halpin T

It

- works for the department with title ‘Computer Science’"). In the next section
we modify the Q_L; language to include a richer range of identifiers and make
it notationally more readable. We also show how types can be emulated by
pfedicates? and define certain precicate and function constants to be included

in all knowledge bases. The language so formed we call KL.

e

~—

sec. 3.4 The formal language KL o 3-13

3.4 Theformal language KL

Our knowledge base language KL is built on top of QL=. To begin with, we
~adopt the following rules to aid readability of formulas. The new

cons$tructions are well formed and have the semantics of their definiens.

1. The arity of a predicate or function symbol is implicitty specified in context by
the number of its arguments. For example, F?xy may be written as Fxy. In
principle, if not in practice, we allow wifs such as Vx3y(Fx&Fay) since this is
short for Vx3y(F*x&Fxy) which has two distinct predicates F* and F2, .

2. Square brackets may be used like parentheses to delimit wifs, ie.
If (@) is a wif then so is [@]

3. Outermost brackets may be dropped “rom a formula occurrence which is whole (not a
proper subformula), i.e.
If (@) or [@] is a whole wif then so is @ -

4. Brackets may be dropped in accordance with the following priority convention for
~ propositional operators, with sequences of the same operator evaluated Ieft-
associatively. ' '

highest (already implied by formation rules)

ol <ge

lowest

eg. FxVGx& Hx =, FxV (Gx & Hx)
Fx VGx VHx =, (FxV Gx)V Hx

Note that =, being a predicate, has higher priority still,

e.g. ~x=y is equivalent to ~(x=y) { here = is shown infix: see later }

5. Extra brackets around wifs are aliowed, 1.e.
' If @ is a wif, so are (@) and [&]

6. Ifv.v_ arelVs, and Q is uniformly V or 3
then if ¢ begins with (, [, ¥V, 3 or ~
then Qv v o=, Qv'l..anaf
elsc Qv,.v, 0 =, Qvl..Qvno_l { here "_" denotes ™ ")

e.g. Vxy(Fxy»Gxy) =, VxVyFExy+Gxy)

af
VxyJzwy Fxyzwv=, VxVy3z3w3vFxyzwv -

Notwe that formulae like El);id:_v and VxxFx are not well formed.

sec. 3.4 The formal language KL) . 3-14

We do not cxpand the set of identifiers for individual vanables but we
do allow more meanmcful identifiers to be used for function and prcdlcate
symbols. As a preliminary, the EBNF -synt;ax«ef»seme‘rel-evanbsyntax »groups is
now set out. Here, a space character " " is used as a metasymbol for "or".
Nonterminals are italicized. [x] means x is optional. {x} means O or more

occurrences of x. Familiar sequences are abbreviated with the use of "..".

lowercase letter (II): ab.z
hppercase letter (ul): AB.Z
letter (): . - 1 ul
'dlglt(a’) ' .0123456789

identifier_char (zdch) Huld_#3%%.

7. functionid: I1{idch)

‘This production rule expands rather than replaces the previous syntax. Some newly
permitted function terms are: cube_of(a); sale(a,b). '

The inclusion of new predicate identifiers is somewhat more complex. To begin

with we add the rule:

8. prefix_predicate id: ul ul{idch} .,
If R is a prefix _predicate__id and 1,,..t_are terrﬁs, then Rt .1, is a wif.

Here " " denotes the space character " . Any predicate symbol with more than one
unsubscnpted character must be terminated by 'a space. Some newly permitted wifs
are: Person x; Likes ab

" So far all predicate symbols are written in prefix position. We now allow

Hoon
wes

| _binary predicate symbols to be written' infix. Here is a place-holder

cll1p51s and has a separate usage from "..". Unless the symbol is an upper-
~ case letter or "=", it must be a lower-case letter followed by at least one

character and flanked by spaces.

9. inﬁ;(_predicate id: ul ..._lidch(idch}_...=

'If R-is an infix_predicate_id with no ".." and 1 t, are terms then 7Rz, is a

- wif. ' :
If ..R... is an infix_predicate_jd and ¢, ¢, are terms then tRt,is a wif. .

I

Some newly permitted wifs are: xRy; x=y; a works_for b; but not axb.
In the third cas: the predicate symbol is "... works_for ...".

sec. 3.4 The formal language KL ' C 3415

We allow predicates of arity above 2 to be written in mixfix (or distfix)
form. These are italicized, with spaces separating them from their terms.

italic_identificr_ch (iic): italic version of 7dc/.

10. mixfix_predicate_id: .._iic(fic) . iicliic) oo [Liico..)

If R is a mixfix_predicate_id then the result of substituting each "..
-in R with a term is a wif.

e.g. "x scores y for z" uses the predicate "... scores ... for ...".

Note that mixfix prédicates are terminated by place-holders, e.g. "A |
score of .. was obtained by .. for ." is illegal. . The language could be
extended further 1o nermit this. and allow pootfix predicates (e.g.- "
is_male"), but we de not include such exter~ions within this thesis.

So far, all spaces have 'served as delimiters in our syntax. We also

permit extra spaces around delimiters as follows:

11. Exmra spaces are allowed around propositional Operators ,b quantifiers, bracket;:
and spaces. '
e.g. Fx V Gx; x = y; Vx Eyz (Fx & yGz)

- We also wish to extend the range of individual constants. Before doing '
so it will be helpful to classify the individuals in the universz of
discourse.” .Recall that any knowledge base state may be glven. ‘an
interpretation'which includes speciﬁcatidn of the domain of individuals D.
Now from the hLlilan-pérspcctive it is natural to partition this domain into a _
‘set of mutually exclusive and collectively exhaustive populanons Figure 3.7 |
_111usrrates a partmon which apphes to all our knowledge base
interpretations. . ' '

" The domam is partitioned into ﬁve classes. For each of these classes, '
some sample members have been depicted by constant terms of either a textual
or graphic namre. We briefly describe each of these classes informally to
convey the main ideas, then provide a formal treatment. v

Srfings are ‘abstract symbols but are denoted in a direct “ay by those
marks which are spatial sequences of characters: naively, suingé may be
"written"; they are lexical entiries. The stﬁng ’Ann’ 1s the 3-character

spatial sequence inside the quotes. All other entities are nonlexical.

sec. 3.4 The formal language KL ' _ 316

(k. (3 - | P
. B . .
_& - . described objects
5 37 3+50 .. numbers
basic
objects : -
S'Ann' 5! . - strings
j ' nil , | oy

Figure 3.7 ‘The domain of objects is partitioned into 5 classes

- Numbers are abstract entities for which we define various mathematicai
operations. W fepresent them by numerals-(i.e. strings which conform to the
syntax of numcric terms). Sometirnes e may wish to pose queries about strings
OT NUITIUErs themselves (e.g. Which surname is also a name of a city? List all
subject codes' starting with "CS". Whose mass in kg is numcncally greater -
than his/her 1Q?7). Moreover, the explicit specification of reference schemes
for described objects (e.g. ~Pecple, Cars, Lengths) involves strings or-
m:nibﬁrs, and derivation rules oftén do likevsise. In Figure 3.7, we have
depicted two descrit>d objects (a particular person and car) by means of
pictures. However, described objects are al’ways refer~mced ir the KB by means
of defirizc descriptions, e.g. "thc_perSon with surname ‘Halpin™. The other
objects are referenced in the KB by specialized ICs or function terms of KL. ‘
| We: use a typeless first order fofmalization in which. predicates and

functions legally range over the'v_vho']e domain.. Moreover; we give ground
function terms the samie ontological status as individual constants, viz. any -
such term dces refer'.to some object in the domain. -We include the nil object
in our domair as ‘he referent for all simple "garbage" expressions; such as
"2+71ed". We may pick any concrete or absi:cact object as nil, so long as it
isn’t-a string, a number or described, e.g. we might pick my current garbage
‘bin as nil! The nil ObJCCt is always denoted by "nil", which we how add asan
IC to XL: If de31red nil may also be t*eated as the empty list, and used to
construct lists i in the usual way.

Ob_]e('tb in-the four classes so far discussed are C.tllf’d b.mc objects.
-The final 01:135 of cobjecrs consists of objects which are ordered pairs. The
pairing operatlon may be applied to any two. obj bjects (basic objects or pairs),
and always produces a pair. So the domain is closed under pairing. Laterin

- this section we axiomatize the pairing operation, using special function terms

sec. 3.4 The formal language KL o 3-17

to denote pairs. Our motivation in including pairs is to simplify later work
with nested fact types. Apart from including described objects, our domain
partitioning is quite similar to the scheme used im the language Trilogy
(Andrews 1987, p. 32).

Note that our ontology is not parsimonious. From an abstract point of
view, any basic object could have been chosen as *»e nil object, and both
multi-character strings and multi-dimensional numbers could have bzesn .
constructed as special sequences using the pairing operation. However, we
feel our classification scheme is closer to the way in which such objects are
perceived in practice. For example, a two-character string is typically
thought of as a spatial ordering of characters, and we might wish to consider
the pair (3,9) without the connotation of a complex number. |

In order to express the partition in Figure 3.7, we treat the. following
prefix predicate identifiers as’ predicate constants with the fixed

interpretation shown in braces:

Basic x {xis a basic object }

Describedx {xis (deﬁnitely) described by the user }
Numberx - {Xisanumber} '

Pairx - {xisapair}

String % ' { x is a character string }

The following purtition axioms are included in our knowledge base system KS.
When first presented, the names of KS axioms are displayed in bold.

P1.. x| (Pasic x V Pairx) & '
(Basic x = Described x V Number x V String X V x = nil)]

P2 Vx| ~(Basic x & Pair x) &

~(Described x & Number x) & , :

~(Described x & String x) & ~(Number x & String X) |

& ~ Described il & ~ Number fil & ~ String nil
By giving "nil" the status of an IC, it follows that nil exists in every

domain, i.e. 3x x=nil (this may be trivially shown with a deduction tree).
Later we introduce ground terms for‘-real numbers and strings; so these also
~ exist in all domains. We see later that if two objects exist, so “oes their
pair. Details ahout the deséﬁbedj entities (if any).are completely dependent.

on the particular KB. However, we provide within KS a minimal semantics for

sec. 3.4 The formal language KL T : . 3-18

‘Number, String and Pair. Let’s start with Number. Although we included this
~ general category to enable the set of n-dimensional numbers to be treated as a
subset of the set of n+I-dimensional numbers, for n = 1, in this thesis we

focus our attention on the real numbers. We begin by adding the following

predicate and axiom:
Realx {xisareal numb'er}
RN vx(Real x +~ Number x)

We now expand the symbols of KL to enable numbers to be referenced in
the usual notation, and ‘add a first order set of axioms for the closcd field
of real numbers, relativized to individuals instantiating the Real predicate.

- To begin with, we add to KL %z individual constants O and 1, two unary
function corstants ~ and ™!, and four binary function constants +, —, * and /.
For convenic_nce,' we write unary - as a prefix operator, ™! as a postﬁx

operator, and +2, -2, ¥2, /2 a5 infix operators using the priority convention

-7 {unary}
*/
4o

- with operators on. the same level evaluated left-associatively, and we allow

extra spaces arounc these operators, e.g.
CxHyFz/wTh = (X(H-@), W)

We also add "#" to KL as a derived symbdl for inequality, with the following

definition (where x and y are any terms):
X#Yy =4 ~x=y)
We now sst out the ten field axioms, relativized 10 reals and including

closure where needed. -Given our lefl associativity convention, the left
operand of = in-RF2 and RF6 could be written without parentheses.

RF1 vxy | Aeal x & Ret.i y ~+ Reaix+y & X—;—y = y+X]
RF2 ° Vxyz [Realx & Realy & Real z + (x+y)+z = x+(y+2) |
- RF3 Rea: 0 & vx[Real x = x40 = x]

RF4 V¥x [Realx-Real x&x+ -x=0]

sec. 3.4 The formal-Janguage KL ' 3-19

RF5 Vxy . [Real x & Real y = Real x*y & x*y = y*x] _

RF6 ¥xyz [Realx & Realy & Real z - (x*y)*z = x*(y*2)]

RF7 Real 1 & x| Real X=X =x] o

RF8 Vxyz [Realx & Realy & Real z = x*(y+2) = (x*y)+(x*z)]
RFS 1 %O ' '

- RF10 ¥x [Reaix&x# 0-Realx ' &x*x™! =1]

When applied to real numbers, 'unary - and ™' give the additive and
" multipiicative inverses, while + and * give the sum and product. Subtraction
- and division are now defined in terms of these operations:

X-y = x+-y

X[y =g x*yT

We now add = as an infix predicate constant, and axiqms to assert that it is
transitive and antisymmetric, and it'provides a total order for the reals.:
TO1 VXyz ‘(x5y&ysz->xs'z)

TO2 Vxy (xsy&ysx-ox=y)

RTO3 vxy (Realx&Realy-+xsyVy=sx)

We now add two axioms to ensure that the reals form an ordered field:

ROF1- Vxyz [Realx&Realy &Realz &x sy=x+zsy+z]
ROF2 . Vxyz [Realx & Realy & Real z &x <y & 0 € z » X*Z < y*z

We now add the following abbreviations (x and y are any terms):

X2y =, yex

X<y = xsy&x#y
df

x* =, x*x*_.%*x (where there are n occurrences of x)

x>y = y<x

- To complete this first order theory of real closed fields we add one
axiom and two axiom schemata. The first axiom (RC1) ensures that cardinal
numbers have real square 100ts: ’ '

RC1 . Vx[ReaIx&Osx—ray(Realy&x=y?)]_

sec. 3.4 ihe rormal language KL " ‘ . - 3-20

- RC2 says that every real polynomial of odd degree has a real zero, and RC3
says that 0 is not a sum of nontrivial real squares:

RC2 vy, y,[Realy, &.. & Realy, = Ei)é(lheal X &

_ Yo VX + L+ Y X =0)] - forn =1,35,.
RC3 VXX, Real x; & .. & Real x, & xof +.+x2=0 .
S o %, =08&.8&x,=0] : forn = 0,1,2,.

The first order theory of real closed‘ﬁelds was shown to be decidable by
Tarski (1949). . It is however at least exponent.ially' comnpglex. Further
background on this topic is given by Rabin (ed. Barwise 1977, sec. C.3), and
anlnU & Keisler (1977 sec. 1.4).

Constants for rational numbers other than 0 and 1 are introduced as

abbreviations for functional terms in the usual way, e.g

2 = 141, 3 =_ 1+4141,..

df dr

01 =, 110, 02 =, 2/0,..
So any ground term of the form [-]d{d}.d{d} is now assigned a specific real
number in all interpretations. Such terns are called, slightly misleadingly,
~numeric constanis. Irrationals may either be referenced by descriptiorn (e.g.
Real x & x* = 2) or be approximated by a rational (e.g. 1.414). Since the
system knows that 0 and 1 are reals, and that reals are closed under the
opcratidns discussed, it knows that Real 2, Real 3 etc.” Moreover, the system
can deduce facts such as 170 > 150 and 170 =2 * 85 from its axioms. As well,
relevant subsets of the reals. may now be defined. The followmcr subsets are

1mportant enough to include in KS

Integer x {xis an integer, ie...-2-1012.. }

Cardinal X ' { xis a cardinal number, i.e. 012.. }

Posintx { x is a positive integer, L.e. 12.. }

We fix the 1nterpretat10n of these predicates by the following axioms.
Note that in this thesis we do not employ different notations tc distingu*sh-
definitions (recursive or otherwise) from the other ~xioms

RS1 wX[ln_teger'x = x=0V .Ely(_lntege_r‘y & (X =y+1Vx=y-1))]
RS2 ' vx(Cardinal x = Integerx&x 2 0)
RS3 vx({ Posint x

I

Integerx &x > 0)

" sec. 3.4 The formal language KL ‘ : _ 3-21

We now expand the set of ICs in KL and add axioms to XS to cater for
those objects which are character strings. Intuitively, strings are sequences
of 0 or more characters. We start by adding ICs known as character constants

for each of the characters- introduced earlier (letters, digits, operators,
etc). We adopt the Modula convention. If ¢ is a character other than the
double-quote (") then the 3-character symbol “c" denotes ¢. The double-quote

hy
.

is denoted by the 3-character symbol: Our first two string axioms are

now set out.

Charx {xis acharacter of KL }

X'=na;| V X__:;lbll \/ "_V X=n|u v X='u')
String x)

ST1 ~ Wx(Char x
ST2 ¥x(Charx

{

Since the list of characters is finite and given, axiom ST1 may be'
unabbreviated by the patient reader. Though not needed, we allow single-

t L

‘quoted character constants for characters other than single-quote, ie. 'c
'= "c" when ¢ is not the single- quote ("): we often use single quotes when
' the context is a formula line rather than a paragraph. We use two contiguous
siugle'-quOtes (') as an IC denoting the null string: intuitively, this is a
sequence of 0 oharacters (its exiétence might not be very intuitive, but the

et

seme could be said of 0). Two double-quotes (") may be also be used to
denote the null string, but we avoid this to save confusion with the constant
- for double-quote (""). . '

We now allow the + operator to be used for concatenation of strings. The
follow1n<T axioms assert that string concatenation 1s commutative and |

associative, and define the null stnn<T

ST3 ¥xy [String x & String y = String x+y & X+y = y+x] .
ST4 . Vxyz [String x & String y & String z~ (x+y) z=x+(y+2)]

CHE- T Strmg £Vx[Str1ngA—»>\r'-X] '

Since + is left-associative, the brackets in the left operand of = in ST4
could have been dropped. We now allow string conoa.tenation terms to be
abbreviated as follows. If “c", ., "c¢," are n -character constants then

n

" "o ” . Lo o — n n M e
€y =y "¢+, for noz 2. For example: "abc” =, "a"+"b"+"c".
Iy — 1 . L "o

Similarly, ‘c..c,' =, ‘c/'+.+'c,, for n = 2. For e,\ample. "™ =,

THHSTE = MH No abbreviations are defined for terms

- with mixed quotes, e.g. """+ in pracuce such terms are not used.

S g g~ M=

Hence each string is given a name, even though some of these are just
.abbreviations for function terms (cf numeric constants) These names are
called strmg constants Although strings are abstract entltles , We may adopt

that is the character sequence 1ns1de 1ts quotes, e.g. the string constants

_ ‘CS112" . "Don't worry." 'Be *happy”.'
denote the strings: ; S
csi1i2 Don't worry. ‘Be "happy“.

The use of a string constant as a term x implies the mith of String x,
since the ST axioms identify characters, the null string, and their)
concatenations as strings. We now define a function Jen which, when applied
to a string, returns the lengrh (ie. the number: of characters) of that
_string'. The .iext two axioms enable the length of any string to be computcd.
The theorems that len(") = 0 and ~Char " are now trivial to prove. The
length of multi-character strings may be computed by expressing them in the

form c+s where ¢ is a character.

lens) | length of string s }
ST6 Vx [Charx-len(x) = 1] o
ST7 Vvxy [String x & String y = len(x-+y) = len(x) + len(y)]

Axioms TO1 él_nd TO?2 established < as a transitive. and antisymmetric
- operator, and definitions were givenA for < etc. We now use these operat'ors‘
- for lexicographic ordering of sfn'ngs To do this we first introduce an ord
function which assigns a unique cardinal number to each character. For this
thesis we adopr the ASCII ordering for standard ASCH characters, and assume-
the reader may supply distinct ordinal values for the rest. _Th1s injection
from characters to cardinals may be set out as a single axiom ST8 (shown

gbbl'eviatcd).
ordlc) { ordinal number for character ¢}
ST8 ~ ord('")= 22 & ord(™) = 34 & ord('#") = 35 & ..

- It follows that the character constants denote distinct characters. We
»call this theorem CC#. When first presented, the names of XS thcorenr that

are not axioms are shown in italics.’

sec. 3.4 The formal language KL ' 3-23

CC# 'a'¢'b' & 'a'#'c' &.. & ™

This may be trivially proved with a deduction tree, e.g. to show 'a' # 'b"

assume 'a' = 'b', use ST8 and the Real axion:s to show ord('a") # ord('b",
theri use the assumption and SI to deduce ord(‘a") # Qrd(‘a'),-which closes.
For convenience we now deﬁne two more functions (head and rest) with the
following meaning when applied to non-null strings:

head(x) { the first character o » }
rest(x) { the rest of x, i.e. all but'the head of x }
ST9 Vxy [Char x & String y - head(x+y) = x & rest(x+y) =y]

For example: head('BSc") = 'B', and rest('BSc') = 'Sc'. Note that a character

is a special case of a string. We now add string axioms for =:

ST10 W¥x [Stringx-"sx]
ST11 - VXy [Charx &Chary - (x sy =ord(x) < ord(y))]
ST12 vxy [Stringx & Stringy &x# " &y # ">
(xsy = heéd(>) < hewaly) &
(head(x) = head(y) = rest(x; = resi(y)))]

The axiomarization of =, =, <; > and 2 for strings is now complete. For
- ekample, to prove that 'ab' < ‘c': assume 'ab' = 'c'; use ST axic.ms to show
'ab' = 'ab' and ~('c' =< 'ab"); use SI to give ~('ab‘ < 'ab"); closure now
gives 'ab' - 'o'; ST axioms give 'ab’ < 'c'; combining we have 'ab' < 'c' by
definition. To shorten such proofs, the following thcorem concerning equality

of non-null stings may be proved using TO2 and ST12:

ST= Vxy [String x & Sfring y&x#"&y#" S
(x=y = head(x) = head(y) & rest(x) = rest(y))]

Sting analogues of TO3 and OF1 are also easily proved. The string-
axioms STL.ST12 are adequate to define any suhtypc of String and in
_conjunction with our Real axioms may be used to define . further string
operaiions if required. However, 10 simplify the specification of string
subtypes (e:g. ¢20, aaddd -- we discuss such cases in the next chapter), it is
convenient to define ti:e following lexical subtypes and include them within
KS.

sec. 3.4 Inerormal language KL 3-24

Digitx { x is a digit character }
Letterx - {xisaletter} ‘
Digits x { x is a string of 1 or more digits } -

Lettersx {xis astring of 1 or more letters }

ST13 vx { Digitx =x="0' V x="1' V .. x="9") ,
ST14 VX { etter x = x="a’ V.Vx='2' Vx="A'V .V x='Z")
STiS vx [Digits x = String x & x:"" & Digit head{x) &
. (rest(x)#" = Digits rest(x))]
ST16 Wx [Letters x = String x & x#" & Letter head(x) &
{rest{x)#" - Letters rest{x))]

Elsewhere (NH89 Ch. 7) we allowed for the possibility of refraining from
specifying either numeric or string aspects for a symbol, e.g. consider "35"
as a RoomNr. However, for simplicity we assume by default that such "atomic
symbuls” are really strings; it does .not matter concéptually if the string
- operations are not used, and at the implementation level other data types
could be chosen if desired. For example, in the conceptual schema we might
specify room# as a string reference mode, but when we later specify the
internal schema we might choose a numeric data type such as smaliint simply to
save storage space or 0 speed up value comparisons.

Typically, numeric_and string predicates and functions are not used
explicitly when specifying a database (i.e. the set of stored- facts), and are -
- usually not depicted explicitly on a NIAM CS diagram. However they are
required to specify lexical subtypes (e.g. <aaddd>), some derivation rules
(e.g. computing profit from cost and sale prices), some nongraphic constraints
(e.g. deathyr not earlier than birthyr), and various ad hoc queries (e.g. list
all thesis titles containing the phrase “information systems"). '

We now axiomatize ordered pairs. To begin with, we add the following

function constant and axiom.
pair(x,y) { the ordered pair comprising x followed by y }
OP1 VX X,V,Y,[pairx,y,) = pair(x,y,) = x=x, &y,=y,]

Since ground function terms always refer; if x anc y are objects in the
domain, so is pair(x,y). For convenience, we allow any term of the form
’"pair(x,y)”, where x and y are terms, to be abbreviated to "(xy)". To
prevent confusion with the notation for function argument lists, we stipulate
that an occurrence of the form "(xy)" in 2 formula mav be expanded to

sec. 3.4 The formal language KL -3-25

"pair(x,y)" if and only if the occurrence is not immediately preceded by a
function symbol. Axiom OP1 may now be expressed more concisely:

Vxlxzylyl{ (Xx’yx) = (Xz'yz =X =X, & y1=y2]

We make the pairing operation right-associative, dllowing removal of
brackets around embedded pairs. If x, y and z are any terms, and "(x,y,2)"
does not follow a function symbol then:

(ey,2) =, x,0.2) { where each side isb a term }

Since the ,pair'function is recursive, ordered n-tuples of any arity above 1
can be represented as a pair. In this sense, the domain is closed under
tupling. We make use of this notation liier when we formalize nested fact
' types. o -
" System.ICs (a, b, ¢, d, e, a, '.) are useful in discussing model
theoretic matters (e.g. setting out universal and existential instantadons,
and depicting a modzl or countermodel), but are not used-for the specification
of a conceptual schema or a database. The propositional constants T and Fare
used only i‘o,‘r formal proofs. - Ahy cbﬁceptual schema or database may be
expressed as a set of closed KL wffs (without system 1Cs or propositional
constants}. Hdwever, not just émy set of wifs will count as a CS or DB. In
the next two chaptefs, we discuss how a 'knowledge base expresséd in.the
graphical and textual notation of NIAM may be translated into KL. - ‘

4 Specifying NIAM conceptualschemasin KL

4.-1 Object types and predicates

To claﬁfy the NIAM nota_tion,‘and‘to enable theorems abou_t conceptual schemas
1o be formaHy proved, ihis chapter and the next explain how a knowledge base
expressed in the NIAM notation may be translated into a set of sentences in
'KL. Provided formation rules for a NIAM knowledge base can be supplied, this
will also determine what counts as a well formed knowledge base in KI.. Our
formalization also introduces a number of revisions and extensions to NIAM
itself (especially in the next chapter). | |
Séme of our early ideas on translating NIAM into predicate logic were.
communicated elsewhere (Nijssen et al. 1988, pp. 3-4, 8-14). However, this
chapter provides & much more comprehensivé and improved treatment. To
begin with, each knowledge base includes the XS axioms discussed previousiy.
We now translate the components of 2 NIAMCS diagram, starting with the nodes
which are ellipses. The names of these nodes conform to the syntax of a
prefix_predicate_id, and are written inside or beside the ellipse. .
_ Informally, “an ellipse may be thought of as enclosing a set of |
individuals. When the ellipse is broken these individuals are strings |
(lexical objects). This is formally captured by translation rule TBE

(Translate Broken Ellipse).” The translation formula is shown on the right.
Translation rule names are shown in plain capitals, staiting with "T". We
- treat TBE etc. as translation schemas, rather than translation instances: here

"A" is a predicate variable standing for any unary predicate.

TBE roA Y VX (Ax =+ String x) , | o

Solid eliipses may be thoughr of as ftn'c_:losin 4 non-lexical objects'(other
than nil). Ifa solid ellipse enclezzs role boxes its ObjﬁC[o are pairs,
otherwise jts objeéts are basic. Alternatively, pair types may be depicted by
a Tectangle surrounding the role boxes. We postpone a detailed discussion of

pairs unti! section 4.6.

sec. 4.1 Object types and predicates - . , 42

A solid ellipse which does not enclose role boxes must be named. If the
ellipse name has a single underline then the objects are real numbers: the

underline reminds us of a segment of the real number line. A _double .

underline is used to include higher dimensional numbers: we make no further
use of the double underline in this thesis. The rule for translating solid
ellipses is set out in TSE.

@ WX (A= Described x)
' (Ax -+ Real X)
‘ VX (AX = Number X)

These undc:rhmntJ conventions are uscd here for the first time. In our

TSE

earlier work (NH89) the terms "entity" and "label" usually meant "d“scnbcd
ob 'eCt or number or pair" and "string" respectively. In cases where strings
played non-referential roles, we spoke of labels that were entities and used a

- doubly bordered ellipse with both solid and broken lines. We no longer use
- this notation. . Strings are always indicated by a single broken ellipse, and

numeric objects are distinguished from described objects by underlining.
Nil is never depicted on a NIAM diagram. Most of what we want to say

about an “object rype" applies for any non-nil object type. So for

“convenience we introduce the hybrid ellipse notation shown in Figure 4.1. An-

ellipse which is half solid and half broken stands for any non-nil’ object
type. Though the names of such hybrid ellipses are not underlined, numeric '
object types are included. It should be understood that this is a metanotation
only: no hybrid ellipses are used in NIAM diagrams, e.g. the designer must

specify . whether an object type is lexical.

N - , A

Figure 4.1 Hybrid ellipses are used only in the metatheory

$eC. 4.1 UDJeCt Iypes and preaicates 43

In a NIAM diagram, a predicate of arity n is displayed as a named,

contiguous sequence of n boxes, where n 2 1, e.g.

R1 R2 R3

Figure 4.2 -~ Unary, binary and ternary predicates

We assume that the. designer has chosen to adopt the convention of using a
single predicate name (unabbreviated if hecessary, as discussed later),
written inside or beside the box which corresponds to the first place holder
of the predicate, with the cpatial order of the boxes (starting at the box -
- with the predicate name) matching the ‘o,rder of the predicate pléceholders.

' We have discussed elsewhere (NH89, Ch. 3) another Way of portraying "fact
“types" in NIAM, which makes the spatial order of the boxes irrelevant by
giving each a role name. If desired, this could be accommodated within our
convention by using the ordinal for the placeholder as the (unqualified) role
name for the box. For example, see Figure 4.3. | |

- R2 .. Rz

Figure 4.3 The left diagram is equivalent to B2 of Figure 4.2

We regard our ordered predicate notation and the unordered role notation
_ as different only in their focus.. In the predicate approach, the predicate
‘name car-ies the burden of the informal semantics with the role names reduced
to ordinals; in the role approach the role names carry the burden of the
informal semantics with the fact type name often reduced to some arbitrary
* identifier. In both approaches we see a linguistic structure in which objects
play various roles with respect to the verb or relationship:

In a NIAM diagram each role box must be connected bly an arc to exactly
oneellipse. Moreover, each (_nabbreviated) predicate name appears only once.
Informally, each role is "ryped" so that only objects satisfying the predicate

‘of the attached ellipse play that role. Here is the unary predicate case:

CA ‘2+ R | e.g. - jogs

WX (Rx= AX) ' Vx(Jogs x - Persoin X

sec. 4.7 Object types and predicates 4-4

Note that NIAM diagrams, as well as our hybrid ellipses, are topological
rather than metric. Ellipses may be shown with any size and oblateness; role
" boxes may be shown as any rectangle; the contact point of arcs with ellipses

and boxes may be anywhere on the perimeter; ete.

We use the example for TPU to make a general point. The NIAM diagram
asserts that in the UoD under discussion, no individual jogs unless that
individual is a person. There are two basic ways of satisfying this intention
when a database is added. Firstly, we could male it (syntactically) illegal
to enter a {act claiming that some non-person jogs. This would entail adding
specific formation rules to the lan guage for each specific predicate.

The second approach is to allow such sentences as wifs but to reject them
on the basis that they must be jaise. It is this second approach that we
adopt throughout. A specific KB is constructed by starting with XS and adding
axioms specific to the application. Once the axiom that Vx(Jogs x — Person x)
is added to KS, any later assertion that a non-person jogs must be rejected
since it contradicts this axiom. In this sense then, we simulate "typing"
within cur untyped calculus.) . '

As a trivial issue, predicate names on a NIAM diagram must be modified if
necessary to agree with thé syntax of predicate names for KL. With our
‘current version of KL, if we allow NIAM unary predicaf¢ names to start with a
lower-case letier, this letter should be upshifted (see the TPU .example).
Also, the predicate constants already specified for KS should be treated as

‘reserved. , '
The binary predicate case is dealt with as follows:

TPB Q ,'_" R —-G Wxy (XRy = Ax & By)

Here, and elsewiiere in stating such translations, the object types attached to

the predicate under consideration are not necessarily distinct. The right

hand example in Figure 4.4 is a case where A = B.

@ | : @ : ‘Person;

drives

L

Vxy(x drives y = Person x & Cary) ' likes

. Wxy(x likes y = Perscn x & Person y)

Figure 4.4 Two examples of translating binaries into XL

oy e @niu I TQUETICY CONSTTAINES : 4-5

Ternaries and higher arity predicates are translated similarly. The n-
ary predicate case is summarized by rule TPN. Here Al,..,A,; are any non-nil
6bject types, including described types, numeric types, lexical types and pair .
types (as discussed later, these include ”‘SG'Bf&Eém{ely described

object types).
A . (A
TPN o =
R
VXX, (RX.X, 2 AX &.. &A X) . forallpn 21

Specifying the fact ‘types for a particular conceptual schema involves two
tasks: the names (and arities) of the recognized predicates are listed; and
each predicate has its places "typed" as discussed in this section. These
declarations may be described as “typing constraints”, although in NH89 the
term “constraint” was used in a more restrictive sense.

Though developed independeriﬂ'y, the basic formulation of typing
constraints presented here is rather obvious, and has been adopted by other
researchers (e.g. in Reiter 1984, formulae -of the form TPN are classified as
inlegrity constraints which specify the demains of relations).

4.2 Uniqueness, mandatoryrole andfrequency constraints

- In this section we map three verieties of NIAM graphical constraints into KL,
starting with uniqueness constraints (UCs). As discussed in Nii89 (Ch. 4),
each predicate is given at least one UC. The weakest UC is depicted as a bar
(or two-headed arrow) spanning the whole predicate. This is really no
constraint at all as far.as our formalizarion is concerned, since repetition
of a proposition has no ldgical significance (conjunction is idempotent), and
by default any set of tuples of the right type and arity is allowed. Hence
such "constraints" are simply ignored (see TUCL).

TUCHT ——— e ———— o
R . ignore this "constraint”

sec. 4.2 Uniqueness, mandatory role and frequency constraints 4-8

We now consider intra-predicate UCs which span only some of the roles in
the predicate. The simplest case of this is catered for by TUC2.

TUC2 R o Vxyz (xRy & xRz »y'=z)

All our constraint translations assume a Static interpretation. For instance,
in Figure 4.4 adding a UC to the first role of Drives indicates that fo}' each
~ KB stale, each person drives at most one car: this still allows a person to
drive several cars durin g the lifetime of the application, |

TUC2 is generalized by TUCS3 for the case of any UC spanning n-1 r_oies of
a prediéate, of arity n. Unless the roles are contiguous, arrow tips must be
added to the cons_tfa.int bar (to.distinguish a single UC from two separate
‘UCs). To help explain the translation rule, ordinals have been added aS role
names to indicate that the UC spans all but the ith of the n roles. For a
fact type of arity n to be elementary, any uniqueness constraint on it must
span at least n-1 roles: so TUCI-3 cover all cases of intra-predicate UCs on
elementary fact types. We discuss UCs on compound fact types' later in this

section.

TUC3 R | 1 il n tsisn

Vxxxy(Rxlxx&Rx VX SxX=y)

1+1°" 3

Inter—predlcate umqueness constraints are deplcted w1th the circled "u”

notation. The simplest case is covcrcd by TUCA. -

TUC4. ©

Vxlx:yz (x,Ry & xSz & x Ry & XZSZ‘-> X, =X,)

For the reader who is familiar with the relational data model, TUC4 may -
- be explamed as follows: if a natural join of R ai. 1S s performed (by
- matching values for the object type playing roles R.1-and S.1) then a UC spans.
the columns linked by the "u". Let the obJec.t typss be A, B and C (not
necessarily distinct); and let the corresponding attributes of the natural

SecC. 4.2 uniqueness, manaatoly role ana 1requency constrainis 4~/

joinof R and S (denoted R*S) be a, b and ¢ (assume uﬁiquely hamed) Then the

1nter-pred1cate UC shown in Figure 4.5 amounts to a UC spanning colurnns band .

c of the natural j join (indicated by underlining’ the b c palr)

: ® R*S{Eb,9)

Figure 4.5 An inter-predicate UC in terms of a natural join

TUC4 is generalized in TUC5.to the case of n binaries.

TUCs : =@

VX XYY, (XRY, &.&XRyY, &X, R Y, && Xanyn" X =X,)

1 »n

‘The p0551b111ty of e;\tendmv the use of the "u" notation to handle

further cases (e.g. higher arities, equijoin over more than one attribute, UC

over combinations of tLipleS) suggests itself; currently NIAM diagrams do not
cater for such cases. ‘ | o

If a derived predicate is included on a CS diagram; it is asterisked.
Any constraints marked on a predicate that is singly-asterisked may be ignored
when translating a CS diaoram into KL since, if correct, these constrainvts are
1rr\plved by the definiticn of the denvcd predicate’ and thc comtramts on the .

other predlcates This is surnmanzed in TD1.

D1 R ignore q:onstraints on singly-asterisxed prediéates

Since constraints may be included on these prediéafes to make them more
obvious to humans, it is still important to ensuré'that' such constraints are
consistent with the rest of the CS. These Constramts may be translated and
checked for con51stency in the same way as constraints on other predlcates
The next chapter introduces a special class of doubly-asterisked derived

predicates: constrain:s on these should not be ignored.

e ey ra sl rnal e W I UL Y WU IO QU TED -5

We now consider mandatory roles (total roles). For background discussion
on this topic see our earlier work (NH89, sec. 6.3). In this thesis we make

some minor changes to our earlier treatment of mandatory roles for derived

predicates, and explore the use of strings and numbers in more detail.
Roughly, a role is mandatory if, in every interpretation of the CS, it must be
played by all .the instances of its object type that are mentioned in the
intcrprctaﬁon. In contrast to our earlier work, we now.allow these instances
to be mentioned in stored or derived fact types. A binary case is shown in
TMR1. |

: g ™ : .
- TMR1 G e—— R — . VWX (Ax~ 3y xRy)

“

On a NIAM diagram, a role is explicitly indicated as mandatory ‘by adding
a dot where the arc from the role box meets its object type ellipse. TMR2
‘generalizes TMR1 to predicates of any arity where the role may occur at any |
position.

TMR2 R| 1] i n 1<i%n

Vx; (A= 3X.%; X X, RX LX)

A disjunctier of roles is explicitly specified as ‘mandatory by joining
the role arcs at the object type ellipse and placing a dot there. TMR3 gives
a simple binary case: | '

VX {Ax'—> dy(xHy V. VxR y)]

This is generalized in TMR4. Though this general manslation is ugly, it is.

simple to carry out in any individral case.
p Ty y

Cub. e wNUSHIGSS, THalUAIUly TUIE d11U Ireqguency consraints 4-8

om=maxof M,..,Ma .
TMR4

Ma

VX[AX = 5X1~Xm_1(Rlxl 11- 1XX11+] V V R Xl Xl 1XX1n+1 X)]

We consider further aspects of mandatory roles (¢.g. implicit specification)
in the next chapter. |

The translation formulae for TMR2 and TMR4 are a little dlfﬁf‘”lt to
read (and print!), because in order to talk about a role we had to introduce
variables for each position in the predicate. For convenience we now
-introduce an abbreviated hotatiqn which more directly suppbrts the concepts of
object types and roles. To begin with, we allow unary predication to be
written like a set membership assertion. If x is an IV and A a unary

- predicate symbol, then we define:

Note that this is just a rewrite rule. Although we may 1nfo*'mally think
of "x € A" as’ saying that x is a member of the set A, where in a given -
interpretation a predicate is identified with its exiension, we havs not
actuallv included any set theory in our first order formalization. In
particular, we are not ?Toino to set ﬁp an: axiomatic basis for sets. Such
abbreviations are .ypically used only for predlcates correspondlmT to NIAM
object types as suggested by the diagram on the right.

We now introduce a more general abbreviatibn. If R is a n-ary predicate,
then we identify its i_th. role as R.i (cf. qualified i¢ld names in Pascal, SQL
etc.) and define: ‘

XeRI =, IxX.X (Rx.X &X=X;)

Although informally th= diagram helps us picture this in terms of membership
in the. set of objects in the ;th place of the vredicate, formally we have just
defined an abbreviation. When formal proofs are set out, formulae using the

new notztion must first be unabbraviated, uniess derived inference rules using

e e swssinfuerevLy HHIMIUUUY Y VIV QU T YUV LU0 U QD oG- iU

the high level notation have been established. Howevér, many formulae may"
now be written more concisely. For example, the translation rules TMR2 and
TMR4 may be replaced with the shorter forms TMR2’ and TMR4’ as shown. The

equivalence between the short and long forms is easily proyéd' by

unabbreviating and then using a deduction tree.

CTMR2' Vx(Xx€A-XERJ)

TMR4 Wx(x€A-x€R. V.VxeR.i)

Uniqueness constraints are a special case of occurrence frequency
constraints (ECs). Recall our discussion of these constraints in section 2.2.
An FC of n (where n is an integer) on a role or role sequence means any given
instantiation of the Tole (sequence) occurs n times (in that relation). In
_contrast to our earlie_r work, we use n,m to mean an integer in the range n..m.
An FC of n;m on a role (sequence). means that each instantiation of the role
(sequence) occurs at least n and at most m times. A simple. birary case is
set out in TFC1. This says that if X’lR’S something, x R’s exactly (at least
and at most) n things. = ' 4

TFCH R : nz1

VX[Hy ny =3y, (v, #Y, &Y #y3 &.& Y, #Y, & xRy, &.& xRy,)]
&V, [XRY, BBy, Sy =y, V=Y, Vv Yn=Yna 1

Notice that when n = 1, TFCI reduces to TUC2. A simple binary- case for
the frequency range constraint is given in TFC2. ThlS says that if x- R S

something it R’s at least n things and at most m things.

TFC2 R ' 1sn&n<m

X[3y, xRy, = 3y,.y,(y,#y, &YV, #Y, &.&y,_ .y, & xRy, &.&XxRy,)]
& VXY;'-ym+1 [xRy, &.&XxRy__ =y =y, Vy=y V.Vy =y]

By allowing the possibility that n = m, an FC of n may be defined as ah)
FC of n;n. So TFC1 becomes a special case _of TEC2. Clearly, TFC2 may be
- generalized further to the case where the p‘rediéate'may be of any arity and
the role may be in any positioh.» Thotgh this generalization is

s eme sl UU) LB NN Y I S U Iy IO T IS ~=11

-straightforward, its specification is lengthy and difficult to read using our
current notation. Indeed, even TFC1 and TFC2 are somewhat difficult to
interpret at a glance. To simplify the formulation of such results, we

introduce some higher level constructs as abbreviatioms.
If x and y are IVs and ®x is a wiff with no free occurrence of y, then we
define 3! (the quantifier for unique existence) thus:

3ix dx =, Ix[Dx & Vy(dy »y=X)]

df

The definiens is read "there is exactly one x such that ®x". The "no free.

n_1

occurrence” condition is required to avoid variable collision, e... "z"'is

LR,

used instead of "y" in the following unabbreviatior.:

Vxaly xRy =, Vx3y| xRy & Vz(xRz = z=y)]

Similarly, we define a denumerable list of numeric existential
quantifiers- 3%, 3% 3° etc. The individual cases are obtained by replacing n
in the following definitien schema with I, 2, etc. Clearly 3! is just a’
variant notation for 3. Again, ® must have no free occurrences of y.

A Px. =, 3x.Xx,[Px &.& x, & X #X, &X #X, &.&X, _ #X &

Vy(@y - y=x V.V y=X,)]

For any given n, this is read "there are exactly n x’s sucli that ®x". ‘We may

now set out the translation rule TFC1 more concisely as TFC1’:
TFC1® Vxy(xRy - 3"z xRz)

It is also convenient to define a denumerable number of numeric range
existential quantifiers 3%, 3%, ., 3W etc. Individual cases are

obtained by replacii:g n and m with 0, 1, 2 etc. where n < m.

#x, 1

=+ X=X, VX=X V.V X =X_]

VX dx = 'Elxl..xn[d:x]' && DX, & X #X, & X FX; &.80X,_
& vx..x [(DXL&“& ox_ |

For a given n and m this is read "theic we at least n and at most m x’s such

that ®x". If n = O the first conjunct disappears, s this is read as "thera

are at most m x’s such that ®x". For example, "3%x Senator x" is read

sec. 4.2 Uniqueness, mandatory role and frequency constraints ' 4-12

"there are at least 5 and at most 7 senators”, and "3%’x Senator x" is read
"there are at most 7 senators”. Clearly the earlier numeric existential

quantifiers are special cases of the numeric_range existential quantifiers
(viz. where n = m). TFC2 may now be shortened to TFC2': '

TECZ® Vxy(XRy - 3%™z xRz)

Uniform lists of 3! may be abbreviated as for v and 3, e.g. "3lxy xRy" is
short for "3!x3!y xRy". However, we do not so abbreviate lists of the other
quantifiers, e.g. we do not use "33y *Ry" as short for "3* xEI y xRy". Partly

to cater for such cases, we allow a sequence of IVs (e.g. xlxzx;') to be-

ll L1t

abbreviated as an underlined symbol (e.g. x"). Although inforrnally such a

symbol may be thought of as denotmrr a tuple variable, formally we treat it
simply as an dwmwano“

If ¢x is a formula in which x only occurs appended to n-ary predicate
symbols, and x,.x,, is a sequenée-of IVs which are not free in @x, then the
following abbreviations are defined:

VX X = o VXX, DXL,
X Ex =0 33X, P,

3!5 @5 =, 3X.x, f:bxl..xn
X=Y =, X=Y, &.&X =y,

For exarhp]e' if R and S are ternary then "3x(Rx - Sx & Tx)" may be -
unabbrev1ated as "Ixyz(Rxyz - Sxyz & Ty)". The Uanslauon ru]e TUC3 rnay

now be shortened to the pnmed form:
TUCE Wx[x€Ri>3lyRy &y=x]
TFC3 shows a simple case of an FC on a role combination: each

instantiation of the role pair marked out by the "I 1" occurs at least » and
at most m times. We first cet out the long ver.ion of the translation rule.

— mm A
TFC3 R : 1sn&n=m

Vxy[3z, nyzl—>322..7_,(#2, &2, #2, &.. &zn_sz & Rxyz, &.& Rxyz,)]
& vxyz,.z_ | [ny.‘z1 &.&Rxyz_ - zl=z2 Vz=z2V.Vz =z]

sec. 4.2 Uniquenéss, mandatory role and frequency constraints 4-13

To simplify this and other cases, we define the usage of the other
existential quantifiers with underlined variables’'in an analogous manner to" :

our earlier definition. All such cases are covered by the following

definition (list). Note that x; etc. are underlined variables.

#x, |

=X =X, Vx—x V. Vx—x ol

El""”‘fﬂbz =, IX.X, [d)x &.& Ox, & x ;éx &x-,-x &.& %
O aVXLX [cbx & &q>x

71"'1

1

The general case of an FCona role anywhere in any predlcate may now be

specified as in TFC4.-

nm

TFC4 R | 1| . i ou

i Y
CIA A
3
1A

3

1A
jwd

VX[X € R.i» 3Mmz(Rz & 2, = X)]

.Equivalently: VX[R_)gj—» 3%"z(Rz & z; = X;)]
The trenslﬁtion rule TFC3 may be shor.tened to TEC3’:
. fFCS' Vxyz| nyz = I RX & X =X & X, =y)j
The most general case of an FC may be translated using rule TFC5. Here

the predicate is of a.fity“u, and tle constraint spans the r 10les
R.il,..,R.l'r.‘ » .

TFCs R [| | |k | |
Vx [Rx~ 3%z Rz & 2, =%, & . &2, =X,)] -

It is convenient to use "3?" as an alternative notation for "3%. If x
and y are IVs and @x isa wif with no free occurrence of y, then we deme 3?
(read ' 'there is at most one") thus:
df

I dx =, Vxy(dx & By~ x=y)

This enables a UC on a role to be expressed more conc:1se1y, e.g. TUC2’
abbrevmtes TUC’> , :

SEC. 4.3 OUDIYPES) 4-14

TUC2' Vx3?y xRy

This quantifier is also useful for translating uniqueness constraints on

compound fact rypes. Although in a conccptuai schema we aim to eliminate
- compound fact types in favour of elementary fact types, it is useful to be
able to discuss compound fact types at the conceptual level. With a compdund ,
fact type of arity n, a UC may span between 1 and n roles. The general case
(TUC6)>is now set out. Here a UC spans r roles in positions i1, .., ir. This
case actually covers all possible intra-predicate UCs, whether the fact type |

is elementary or compound.

—— —_— e —

TUCe R ' I{ Iy . i

T

.Vxl..xr 3?7z (Rz &z =x; & .. &z, =X;)

The combination of a mandatory role constraint and UC on a role may also
be rendered concisely by use of 3!. For example, the CS fragment in Figure
4.6 may be translated as the three KL sentences shown.

\\ e —— \\
| C&\;_—R . ,—6;.

Vxy (xRy = Ax & By)-
Vx(AX + 3ty xRY) .

Yy3?x xRy

Figure 4.6 A concise translation of a CS fragment

4.3 Subtypes

We now consider how subrype constraints may be mapped into KL. For a
detailed but high level weatment of NIAM subtypes see our earlier work (NH89,
Ch. 6). In CS diagrams, subtypes are connected to their immediate supertype-
by a directed line segment. The i_nformétion conveyed by this linkage may be |
translated as shown in Figure 4.7: ' '

sec. 4.3 Subtypes . 4-15

A}
" Vx(Bx = Ax)
B\ .
’/
Figure 4.7 Information conveyed by a subtype link

However, in NIAM only well defined proper subtypes are allowed. This
means that included in the CS there must be subtype defi)iiribn (SD). Such
definitions are written in textual form below the CS diagram. Since the
subtype definitions imply the Hﬁkage information there is no need to
translate any subtype linkages into KL. However, the subtype definitions must
be translated. In order for such translation to be automatic, a formal
language for such definitions needs to be defined, together with an algorithm
for mapping to XL. As a temporary solution, for. this thesis we assume that,
except for string and numeric subtyPes (as éxplained shortly), the definitions
are actually given in KL itself; so such definitions are mapped unaltered.
For example, a subtype Man might be defined as follows:

Vx [Man x = 3y(x has_gender y & y has_gendercode 'm')]

Membership in the relevant supertype (e.g. Person x) is implied by the
typing -constraint on the predicate "... has gender ...", but could be added as
a comment in braces for human readers. A useful exercise would be to develop
a more convenient notation for such definitions. For example, given that
Gender is standardly referenced by gendercode it woild not be difficult to
define translation rules so that the following text would be treated as an
abbreviation of the previoué definition: Man =, Person having Gender 'm’. It
should be understood that the main impact of adding subtype definitions is -
felt only when the typing constraints are defined for the toles played by the
subtype (consider rule TPN where the subtype is one of the A)).

Subtypes for strings and numbers are usually specified in a different
way. In our earlier work (NHS9, secs 6.2,7.1) we ihteruced some notations
for this task. -We now provide a formal and improV‘ed treatment of these
notations, and clarify the meaning of abbreviated 1:1 reference schemes as
portrayed on NIAM diagrams. We start by examining lexical subnypes, i.e.
subtypes of String. g '

Recall that lexical types appear as broken ellipses on a NIAM diagram. ‘

- Sometimes it mdy ‘be convenient to include names for these types on the

sec. 4.3 Subtypes 4-1v6 :

diagram, but vthis.is not essential. If no lexical constraint is _speciﬁéd for .
the type then it is assumed to be the type String (see rule TBE). If it is
desired to restrict the type to a proper subset of String, then an appropriate
subtype definition is written, in abbreviated forrn bes1de the subtype node’ _
_(or even inside it if the node is unnamed). We now prov1de a standard list of
abbreviations for ‘specifying such lexical subtypes. These cover almost all
practical cases. Any other cases may be defined using the String axioms
established eatlier. , | S

Earlier we defined expressions of the form x € A to mean Ax. It is
convenient to define several other uses of €. If x 1s an individual variable
and al, .4, are cuner n stnno constants or n numeric constants thcn we
define:

Ae{al,, a,t =, x'=a1V..Vx=an
ffos, . s' are string constants, a lexical object typ_e may be specified as
the set {s,..,s,} by listing this set beside the nade, i.e. '

-TSD1 VAL {spas,y W[Ax = xe{sl,, }]

For example, Gendercode 1m<fht be spcmﬁed as { ‘m’,'f'} and Colourcodc as
' { 'red','green’,"blue'). ‘ |
. The lexical subtypes D101t Letter, Digits and Letters have already been
deﬁncd, (Axioms ST13.16). We now use .these to spcmfy various string
patterns. - Angle brackets are used to delimit such lexical subtype
déﬁnitions. "We first define uses of €. wifh angle brackets. Here 7 is a

positive integer.

af

X € <cn> =, . Stringx&x"&len(x) =n-
X€e<nc> =, ' Stringx&lenx) =n '
X€<dn> =, Digits x & len{x) s n

X€ <nd> =_ Digits x & len(x) = n

X € <an> = Letters x & len(x) < n

X € <na» = Lettersx & len(x) = n

These respectively mean that x is a non-null string of at most n characters,

exactly n characters, at most 7 digits, exactly n digits, at most n letters,

sec. 4.3 Subtypes ' v 4-17

and exactly n letters. For the exact cases we allow the "c", "d" or "a" to be

written n times as a "vivid pattern" e.g.

<cc> may be used instead of <2c>
. <dddd>may be used instead of <4d>
<aaa> may be used instead of <3a>

etc.
A

Vivid string patterns may be (recursively) concatenated by juxtap'osition, le.

if <p> and <g¢> are vivid string patterns then so is <pg>, and
X € <pg> =, dyz(x=y+z8&y € <p> &z € <g>)

- Only vivid string patterns may be concatenated by juxtaposition. However, all
smng patterns may be (recursively) concatenated by use of +, i.e. if <p> and
* <g> are string patterns then so is <p+g>, and

X E<pHg>=,

Elyz(x=y+z&ye<p> &ze<q>,)

If <> is a strmtT pattern, then a lemcal node may be specified as this
: strm<T subtype by writing the pattem beside the node, i. e.

TSD2 AL <> VX[AX =X € <..>]

For example, the left subtype in Figure 4.8 might be used for subject
‘codes (e.g. "CS112"). Instead of this vivid forrn, the string pattern could
have been?spcciﬁed as <2a+3d>. The right subtypve in this figure might be
used for names consisting of a 'surnamé of one to 20 characters, then a space,
then one to three initials. | | ' :

- -
- =~ - ~

~ . /7 ~
. . \
’\Subjectcode,‘ <aaddd> . {Personname; <a20+' '+a3>
~ o ° ~ e

Vx [-Subjectcode x= StringXx & yzx =y+z & Létters y
’ : o & len(y)=2 & Digits z & len(z2)=3)]

Vx [Personname x = String x & 3yz(x = y+' '+z & Letters y
' ~&len(y) < 20 & Letters z & ien(z) £ 3)]

Figure 4.2 Two e>:,amples of lexical constraints

ST, 4.0 DUIIYMES . . : 4-ib

_ "In setting out subtype specification Tules, we use a predicate variable.
to refer to the subtype. If no subtype name is supplied, the subtype

definition is used instead of this name when typing ‘c'onszraints are specified

for the roles played by the subtype. For example, consider Figure 49. ~

has_gendercode

P

/ \
'\ I\ {'m!’!f!}
~ /

~.

Vxy (x nas_gendercode y + Genderx &y = 'm' Vy = 'f')

- Figure 4.9 Example of an unnamed lexical subtype

If we had included the name "Gendermde" for the string subtype, then the
subschema would have been translated by TPB and TSD1 to the two formulae:
Vxy(x has__frend.ercode y = Gender x & Gendercode o8 Vx(Gender‘coue X =
x='m"V x="f"). ‘ '
' Note that on a cs dlaoram lexical subtypu often overlap (e.g. <c20>,

<aadud/ {'Spring', 'Summer', 'Autumn’, "Winter';). This overlapping is
~ implicitly specified by lexical constraints of the kind just discussed. It is
'very Tare to exhibit any arrc's between lexical 'ty’pes. If such arrows are
3 shown they may be ignored in translating since they are implied by the subtvpz
 definiticz.. | | o

The same comraent apphes to numeric subtypes. Earlier, we sp=cified four
subtypes of Number: Real, Integer, Cardinal and Posint. If used, these appear -
as a solid ellipse W1th the appropnate name: subtype linkages to Real are not
normally shown on the diagrara. If any other suotyjpe of Real is to be used it
1s shown as a (possibly named) solid elhpse-wnh the subtype definition
writteﬁ, in abbreviated form, beside or in the ellipse; again, a.subtype arrow
to Real is usu_élly omit'ted.v We now provide some sfa»ndard abbreviations for
specifying such éubtypes. If needed, otner real ,subtypes.may be defined usin g
the Real axioms established earlier. ‘ | | |
’ As with strings, a finite set of real numbers may simply be listed in

full. The translation rule is TSD3 (cf. TSD1), where ny, .., 1, are numeric

.constants for the Reals.

TSD3 ‘ {n,n i} Vx(Ax X€E {”1' W)
Recall that quotes must not be used, otherwise the constants denote strings -
rather than numbers. For exarﬁple, 1,23} is a set of numbers but

sec. 4.3 Subtypes - ‘ 4-19

{'1','2','3"} is a set of strings. One’ formation rule for schema diagrams is
that sets of quoted constants may be specified only for broken ellipses. '
Other subtypes of Real are delimited by square brackets or round

brackets, depending on the case. We first define the use of € with such
bracketed expressions. In these definitions, n and m are 1ntecers where n < m,
and r and s are reals where r <'s. Integer subranﬂes are defined with the
help of "..", e.g. [1..5] 1s {1,2,3,4,5}. We use "_" (suggesting a segment of
the real number line) to do a similar job for a continuum of reals, e.g. [0_1]
is the set of reals from 0 through 1. The dn notation informally means a
number denoted by a non-null string of up to » digits, and # allows. signed
numbers. A round bracket is used to exclude a de11nr11t1n<T nurnber e.g. [0_1)
is the set of non-negative reals below 1. Since this use of round brackets
- requires that an underscore be included, there is no danger of conflation with

our use of parentheses as pair delimiters.

X € [n.m] =_ ' Integerx&xzn&xsm
x € [n..] =, Integerx&xzn '
X € [.n] =, Integerx &x s n
X € [r_s] =, . Realx&xzr&xss
xe€[r] =4 Realx &x 2 r

Xe[r] =, Realx&xsr
X € (r_s) Realx&x>r&x<s

df

.~ Other cases for round brackets and pemutatlons of round and square brackets
may obviously be specified. o

If a maximum precision needs to be specified (e.g. dollar values), this
may be catered foras follows. However any associated derivation rules need
to have correspond1n<T restrictions. For each of these cases we permit "d. ad",

where there are.n "d"s as a vivid vanant of "dn".

xeldn] . - =, Realx&xz0&x<1&Integer x*10"

daf
X € [dn.dm] =, Realx&xzx0x< 10" & Integer x*10™
X € [%.0n] =, Reaix&x>-1&x<1&lntegerx*10"

X € [*dn.dm] =, Realx&x>-10"&x < 10" & integer x*10™

For example, real numbers in the range -99999.99 through 99999.99 with at
most 2 digits after the decimal point may be specified as [£d5.d2] or
[+ddddd.dd]. We regard it to be an external than a conceptual issue whether
Ieadi-ng or trailing Zeroé are needed for inpu’t or output (e.g. in our
treatment 3, 3.0, 00003.00 etc. are all defined as 1+1+1).

SEU. 4.0 QUULYIED) . 420

A-union of ranges may be (recursively) specified by separating the ranges

by commas, i.e. if [r,] and [r,] are real ranges, then so is [r,,r,] and

X € [r,r)] =, Xe[rIVxelr]

Here we have used "[", "]" generically to include round brackets. If [..]is
any numeric constraint of the kind specified with our bracket notation, then a
node may be specified as the corresponding subtype of Real by-‘-:vriting this

notation inside or beside the node, i.c.

TSD4 A [.] Ux(AX=x € [.])

‘Figure 4.10 presents two examples, where the € notation has been
unabbreviated. As indicated earlier, it is optional whether subtypes of Real

are given names.

Rating_nr} [1..7]1 vx(Réting_nr._x =integerx & xz 1 &x<7)

PosReal } (0] Vx(PosRealx=Realx &x > 0)

Figure 4,10 Two examples of numeric subtype definitions

- We end this section by defining a further abbreviation which is useful
later. If x is a term and S is a predicate name, role name or a bracketed
range specification, then we define the symbol "¢" (read informally as "does

not belong to") by the following abbreviation: -

XegS ~{x€S)

df -

DTL. 4.4 DULUDTL, Syualily aliu CXCIUSIVI CONISuaiins 427

4.4 Subset, equality and exclusion constraints

Backgrouhd on subset, equality and exclusion constraints may be found in NH89

(sec. 8.2). We now express these in KL, starting with subset constraints.
These are marked with a dotted arrow pointing to the superset. "A simple case

is TSC1: both raw and role versions are given.

x Vx (3dy xRy » 3z xSz)
TSCH : ‘

: " ¥x(x€ER1-+x€8.1)

This is generalized in TSC2, where the predicates may be of any arity
(induding unafy) and the roles may be in any. position. Despite visual
appearances, we do not require the predicates to be of the same arity or the
roles to be in the same position;'morcov'er, R and S need not be distinct.

s BT]

TSC2 - Vx (X € Ri=X € SJ)
S |

TSC3 covers the general case of a subset constraint between pairs of

contiguous roles. If R and S are binary this simplifies to Vxy(xRy - xSy).
Note that predication is needed to -c’stabl__i‘sh the underlined variables as "row

variables".

-

[T

Vil 32(Rz&x =28y =2;) » 3W(SW &x = w; &y = w;)]

TSC3

This geusralizes further to TSC4, the case of a subset constraint between

predicate tuples of (not necessarily contiguous) roles:

OO, T VULUDTL SYuanly arng CALIUD IV W 10U LD : b SN

S [Ji A In] ‘

TSC4

R l:_ il . i B i, —]

VX . X, [Fy(RY & X =Y &.& X, =Y;) Jz2(Sz & x, = ?j1 &.&Xx, = z, i

Equality constraints occur when there are subset constraints in both .
directions. A dotted line with arrow tips at both ends is shown
connecting the relevant operands (optionally, both arrows tips may be
delet=d). By replacing ">" in TSC1-4 with "=" we o:b'tain TECI4:

S : '
- r " Vx (3JyxRy =3zx8z)
TECT : ’
o VX (x€R1=xE€S.1)
‘R
TEC2 C ' : VX (XERJ=XES))
s __1 |
TECS -]

A I

Vil 3z(Rz&x=2z;&y =27,) = 3W(Sw&x = W; &y = w;,,)]

S [jl - Jr Jn ’ :]
: : ' _
TEC4 i

R l:_' i; _ izz - i _—:}'

VXJ X}l[ax(RX & X, = yi; &"&lxn = yin) = 35(SE ,& X = Zjl &.& Xy = Zjn)]

sec. 4.4 Subset, equality and exclusion constraints 4-23

We now consider exclusion constraints. A dotted line connects the
relevant operands to an exclusion mark "X" (optionally, this mark may
be circled). - The simple case of TXCI1 is Or1ven in both raw and role

- versions. The role vers1ons are used for the other cases TXC2-4.

S
T Vxyz~(xRy & xRz)
TXC1 X .
: - Vx~(Xx €R1&x€S.1)
R
s il]
TXC2 X VX~(X € Ri & X € 5
’————_ M X —— _ . .
[T]

TXC3 - o ,

Vxy~[3z(Rz &x = z; &y = z; |)&Elw(Sw&x—w &y =

J+1)]

8[: il L __fijn]
TXC4 | . X o

R.[14 i © iy 1

VXX ~[3Y(Ry &X =y, & .&X, = S’iq)-& 2z(Sz&x = zJ-'1 5.& Vn"".' z;, I

TXCl-4 cover the cases where there are two operands. These generalize
| respcctiifely to TXC5-8, where there is a mutval exclusion constraint arnong n
operands. When 7 exceeds 2, it 1. generally recommended that the "x" mark is
circled. The miost important case in practice is where we have a ser of
mutuady exclusive roles (see TXC6: clearly this subsumes TXCs). Here no
object can simultaneous y instontiate any role pair selected from the n roles,

i.e a simple exclusion constraint exists beiween each of the role pairs.

'SeC. 4.4 SUDSEL, equaNty ana exciusion Cosyanns - “+-cht

Wl Tul]
Vx~(X € R.i &X € R, VX ER . &% R V.VXER, i, &XER.i)

Similarly, the formalizations of TXC13- may be adapted to provide
formalizations of TXC5,7-8. Since thes:ﬁ extensions are straightforward, we do
' not specify them hers. '
| We conclude this section by introducing join subset, join equality and
join exclusion constraints, as an extension to NIAM. The pairwise subset case
is set out ir TSCS. As the general specificttion in KL is awkward, we convey
the meaning of the constraint usiug relational concepts. Here we have four .
(not necessarily distinct) predicates R, S, T and U. R*S[c,-,cj] is the
projection on columns ¢;, ¢; of the natural join of R and S. Column ¢; is the
column that role R.i maps onto in the join, and so on. Basically the
constraint asserts that the set of pairs formed in the join projéction
R*S8[c;c;] is 2 subset of the set of pairs formed in the join projection
- T*Ulepeyl. Clearly, for non-vacuous applications the pairs being compared
must belong to compatible pair types (e.g. roles R.i and T.k might be played
by object type A, and roles S,j and U.rplayed by object type B).

TE Uz

e . o
TSCs : R*S[c;c] € T*U[cpcpf
r——_——_:]:_'-',]___ T
R.i -8y

, Similérly, translationé may be ser out for a join equality constraint
. (TEC5) and a join exclusion constraint (TXCS). Clearly, the TSCS, TECS and
TXCY .pairwise join constraints may be generalized to the tuple-wise case.
Although the specification of such general translation rules is awkward in KL,
for any-specific case the KL drfinition is suaightfofward. For example,
TEC5a 15 a simple case of TEC5: this is later used in discussing
transformations on compositely described object tynes; here the population of
the (§.2,T.2) join pai‘rs"rr»lust equal the population of the (R.1,R.2) pairs.

mFT

- TECba -

R o Vxy[3z(zSx & zTy) = Iw Rxyw] -

4.5 Homogeiieous tinaries and other constraints

Background on homo“Pneous binaries and other constraints may bc found in

NH89 (secs 8.3, 8 4). Irrcﬂemvc asymmemc and intransitive constraints
are translated for s1mple homoccncous blnancs as shown: '

TRt . [R - Vx ~xRX
s -
TAST R Wxy{ XRy = ~yRx)
it .
T |R ' Vxyz(ny & yRz =+ ~xRz)

In some cases, similar constraints need to be applied to embedded
- homhogeneous role pairs (e.g. Part contains Part in Quantity). These are

catered for by the following rules. Hc:re' R is at least a ternary.

TIR2 'R‘[B]
Vx![Rx—»%x-—'yi&x:yj)]

as
I JE— 1

TAS2 R[i g :]

ny_z_g[F@&Riv_&x=zi&y=zj—h_v(y'='wi&x,= w;)]

Sec. 4.5 Homogerneous binaries anag Olflef consrrairus 4-20

T2 - R[: i j]

Vxyzwvu [Rw & Rv & RU & X=W; & y=w, & y=vl- & z=v; > ~(X=U; & z=U)]

In some me lhodolorrles (e.g. Entity-Relationship modelling) thp term
"cardinality” is used in classifying relationship types as 1:1, 1in, n:l, or
n:m, but NIAM describes such cases in terms of uniqueness consmaints. In
some NIAM dialvects, the term “cardinality constraint” is a synonym for
"frequency constraint”. However, in our version of NIAM, a cardinaliry
constraint may be imposed on an object type to limit the number of members for
each population of that type (in some cases this might be less than the
cardinalit.y of the type, e.g. a type may include many ohiects only some of
- which may be used at a time). Such constraints may be indiczted by writing
the cardinality range beside the object type ellipse, using our semicolon
notation, and are easily translated using our numeric existential quantifiers.
"To specify that there are at most n objects in each population of A:

TCC . { A 1O -307x Ax

For example, to assert that there is only one President, we may write "0;1"
beside the object type ellipse for President. ' '

- To simplify discussion of the next constraint category, as well as later
transformatioﬁ théorems’ we introduce a further metasymbol. Wicn an object
type must be either lexical or numeric it is shown as a half- solza’ circle with

the type name underlined:

In some cases we need to specify a constraint on the playing of a role by
a single object: we call this a role-object constrain:. We now define three
kinds of role-object constraints for the simple c‘ase. where . the the role is
played by an enumerated lexical or numeric object type (similar constraints
for described object types are cefined in the next chapter). These are set’
out in TROCI-3. Here a is either a string or numeric constant. In each case’

sec. 4.5 Homogeneous binaries and other constraints . G-/

the object a is connected by a broken arc to the relevant role ‘arc: if it is
known that the object type A plays only this role in the global schema diagram .
then the broken arc may be omitted. ‘ ,

The dot above a in TROC1 specifies that if any object plays the
indicated role then a does. In this sense, @ might be called a "mandatory
object"; we introduced this kind of constraint in NF89 (p. 195) using the

‘term "mandatory entity".

TROCH o _ Ix(x €R)+a€eR
J

In TROC2, underlining a specifies a "restricted uniqueness constraint"

for g in that role. A frequency range annotation above or below a specifies a
"restricted frequency constraint” for a in that role (TROC3). These
constraint categories are introduced here for the first time.

\\{"1a1“}
AL LT
TROC2 —h I7X(Rx &x; = a)
J IR
. onm
'\\{"y’as'-}
_ A, .
TROC3 s o 3VX(Rx&x; = a)

J N

As 2 sinmiple example, consider the subschema of Figure 4.11. This might
- be used to record whether a committe‘e'member is the President, one of two
possible Vicé-P_residen_ts, the Secretary, the Treasurer, or an Ordinary member.
The dot over "P" might be used to specify that the President is elected first.
The underscores for "P", "S" and "T" indicate there is at most one President,
at most one Secretary, and at most one Treasurer. The frequency notation
"above "VP" indicates there can be at most 2 Vice-Presidents. Since only one
role is shown connected to the right-hand object type, broken. arcs to this

role are assummed.

sec. 4.6 Nesting , A o v 428 -

has_status_code

. p \\ ° J,'2 B

{ \/ \{'P','VP','S','T','O'}
N T -

— . -~

Figure 4.11 A su_bséhema with five rolé-object constraints

‘Our constraint speciﬁcatibn has now covered ‘all the graphic, static
constraint categories of NH89. Since KL has the expressiveness of predicate
logic, other & inds of constraint can be asserted in KL, but since this vp’ower

‘is open ended ‘we cannot exhaustively list all such cases. Some practical
examples of textual constraints (e.g. people cannot die before they are born)
are considered in later chapters. | |

4.6 Nesting

' Ba_ci_cground on "nested fact types" can be found in NHSS. There we. adopted the
usual high level approach to nesting by dufiiiig an "objectified relationship”
as a relationship which is also treated .as an object ‘which itself plays roles.
In this section we formalize nesting in a more general way us1ng our pair
function, and offer a s1mp1m graphic notation.

To help explain'c. anew approach, we use a familiar example (see Figure
| 4.12). For simPliéity, 'refcrencé modes have been omitted. The subschema on’
the left is in the old notation. We have an‘embcddcd many:many binary
relationship type: Person enrols in Subject. At the outer level we have a.

* functional relationship type for recording the rating scored by a person in a

subject. In our analy31s (see NH89 P- 100), the cmbcdded part must have a uc
spanning its entire length. If it has a shorter key then, if nesting ‘is 1o

oceur, this key should be embedded instead. For a contrary view on this
matter, see Falkenberg (1986, p. 7-23). _

With the old notation, the UC must be marked separatcly and an elhps“ is
drawn around the embedded part. This can be awkward to draw, especially if
the embedded part has several roles; While we still pcrmit the old notation,
We now. p‘rcfer 10 use . frame ("rounded rcct.incle") instead of an éllipse with
the understanding that a Jull length UC is assumed (visually one may Imagine
the UC ovcrlald on one of the long sides of the frame). Apa;'t.ﬁom a
mandatory role dot, any constraint marks around the embedded part are

understood to apply to the inner roles.

sec. 4.6 Nesting ’ o 4-29

Person) (Subject @ - - Subject

—

scores enrolled in scores -
enrolled in : i

Figure 4.12. Old (left) and new (right} notations for nesting

In NIAM the embedded objects are usv~'ly considered to be relationships -
or fa_cts. However, we now believe it is simpler, and usually just as Iiatural,
to think of these objects as pairs. For exarnplé, rather than coying that a
particular enrolment relations‘ﬁp between a person and a subject'scorPé a’
rating, we may simply say that the (Person Subjéct) pair scores the ratir ;. A
major pragmatic reason for adopting this new approach is that it const iderably
simplifies our treatment of equivalence transformations involving nestmg.

Note that we use the word "relationship” in its normal logical sense,
ie. a relationship is a proposition, not a tuple. Relationships may be
assigned truth values but individuals cannot. In short, we do not include

relationships as individuals. Syntactically, is an operator between wffs
and "=" is an operator between terms, and a Wif is not a term. For example,
we may say "xRy = xSy" and "(x,y) (w z)", but not "xRy = xSy" or "(x,y) =
2" |
Unless there is a Umd reasor. fer doing so, we .prefer not to name
embedded object-types In this case, further translation rules are needed to
- formalize typing or mandatmy role constraints on the role played by thc pair

type. The bma:ry case is spec1ﬁcd by rules TNBI and TMRS.

Vx[XE S.i‘—f dyz(yRz & x = {y,7))]

oL L]]

TMR5 " . { mandatory role aspect: }
% o Vxy[xRy =) € S.i]
sl __ L]]

e e svcouiry _ 4-30

Note that the relevant pairs must instantiate R: it is not enough that
they belong to the Cartesian product of the object types attached to R.1 and
R.2. The binary case is by far the most common. It crenerahzes to the case

where R is n-ary, n > 1, as shown in TN2 and TMR6.

TNB2 (m R)

I S VX[x € S.i=+ 3. X (Rx.X, &= (X,..,%,))]

S

" TMR6 ’(R.L Fi.n) S
v — “{ mandatory role aspect: }

T VXX [RXLX, (X X,) € S
s [Y :I

Although informally we may think of an object (xl,..;xn) ‘as an n-ary
‘tuple, formally we capture it as the pair (xl,(xz,..,xn)).' If the pair object
type is named, then the typing and mandatory role constraints are specified in

 samé way as for other named object types. However, the translation of the
naming must be specified as follows. We cite only the general casc Zere
(TN3).

A

TNG (R1| R.:]

VXL AX = 3x X (RXX, 80X = (kX) T

Having formalized nesting, we introduce a notation for specifying subset,
equality and exclusion constraints for nested fact types where- an cperand’s
roles involve both inner and outer predicates. The nmét important case is
TEC6. Note that because of the typincr constraint on S, the right-hand side of
- the quantified equivalence may be replaced by "3z(xRz & (x,z)Sy)". This kind
of equality constraint is relevant to licencing certain kinds of schema
transformations on nested fact types. Analocrous subset.(TSC6) and exclusion
(TAClO) constraints may also be defined. These pairwise constraint cate gories

may be generalized to tuple-wise cases.

sec. 4.6 Nesting : - : 4-31

TECSE

Vxy[xTy = 3z (x,2)Sy] .

Before ending this section,' we note that nesting can be formalized
. without the pair function by introducing special functions for each case. ' For
example, one might define the function enrblmcnf(x,y) as a ‘1:1 mapping
between the (Person,Subject) pairs instantiating the Enrolment fact type and
its set of values. This function may then be used to refer to the embedded
objects. We used this alternative approach in an earlier formalization.
However, while closer to the traditional concept of "objectifying ‘a
relationship”, this alternative complicates later work on eqﬁivalen-ce
- 'trahsformations. We feel that our current approach provides a sirriplc and
intuitive solution. -)

‘We have now formalized most of the basic NIAM graphic notations. In the
next chapter we look at more advanced aspects of formalization, and introduce
further enhancernents to the methodolo gy- '

5 Furtheraspects of NIAM knowledge bases

5.1 Reference schemes and numbers

In this chapter we discuss further issues regarding the translation of NIAM
knowledge basesinto KL, and deify NIAM to provide an improved treatment in
certain areas. This section examines reference schemes, focussing on
abbreviated notations, and reference schemes that make use of numbers.
Background discussion on reference schemes may be found in NH89 (Ch. 7).
In a knowledge base, described entities are never denoted by individual
constants. Instead definite descriptions are used (e.g. "“the Lecturer with
surname Halpln’" “the Length with cm_value 175"). Such descnpuons are

defined in terms of NIAM reference schemes. The final section of this chapter
examines definite descriptions in more detail. |

Set theoretically, the su'nplest reference scheme for an entity type is an
znjectwn (1:1-into mapping) from the population of that type to String. In
NH89, we introduced the notion of areference mode, i.e. the manner in which

the string relates to the entity being referenced. A meanin gful name may be
chosen for the reference mode and then written in parentheses beside the name _
of the entity type. A reference mode name is a sequence of one or more _
identiﬁer_chara‘cters'(sce Ch. 3), usually starting with' a lower-case letter
unless this conflicts with standard conventions (e.g. "MHz", "K", "%", "$").
A parenthesized reference mode is just an abbrewatzon for the cxp11c1t_
reference scheme under discussion, as shown in Figure 5.1.

In this ﬁgur(: r is the name’ of the reference modc whlle r’is.its
expanded form. If r is one of "name", "code" or "title" then r’ is the result

of prepending lc(4), the lowercase version of name of the entity type A, to 7,
else 7 is simply r. For éxample, "Person (surname)" involves the reference
predicate has_surname ..." while "City (name)" involves the predicate
... has_cityname ..". In the figure, "<.>" denotes ény lexical constraint
(e.g. <aaddd>, {'m','f'}): wrting it beside the entitv type indicates it is

"

to be applied to the implicit label ty, =. If it is desired 10 name the label
type, then »* is chosen except that irs first character is capitalized (e.g.,

"Surname", "Cityname").

<..>
’ }‘\
)
\ !

If r € {"'name’,’code’ 'title’} then r’ = Ic{A)+relser’ =r

Figure 5.1 Anabbreviation for a simple reference scheme

One formation rule for CS diagrams 1s that predicate names be unigue:

this implies that the (expanded) names of reference modes must also be unique.
The expansion scheme in Figure 5.1 conveniently allows multiple occurrences
of "name", "code" and "title" on the same diagram, which expand d‘ifferently,
e.g. "Subject (code)" and "Gender (code)" expand to "Subject (subjectcodc)"
and "Gender (gendercode)". While this enables such abbreviations to be
expanded'indcpendently of others, in practice shorter expansions may be chosen
so long as they are unique to the global schema, e.g. "Gender (code)" might be

Pl

expanded to "Gender (gcode)" if "gcode" is not used elsewhere.

We define only one abbreviation scheme for predicate names. The word

"has" may occur more than once as the abbreviated name of a binary predicate.
To preserve uniqueness of predicate names it is always expanded by prepending
it to an underscore followed by the Jower case version of the name of the

adjacent object type (see Figure 5.2).

o, has_lc(B) .
\\) \.\
— ‘ 1 = —
TG - LG
- I . s

Figure 5.2 ° *has" may be used as an abbreviated predicate name

For example, the left hand schema fragment shown in Figure 5.3 is an

abbreviation of the right hand fragment:

has_gender

@ v ‘ ~ (Parson -

has_phone

Figure 5.3 The left diag"ram abbreviates the right diagram

We now consider abbreviations for cases where a combination of two or
more labels is used to refer to an entity. -For example, a person might be
‘1dentified using a combination of surmame and initials, where the surname

sec. 5.7 Referencé schemes and numbers 5-3

string’ and the initials string are two separate objects. The general
abbreviation schema for a éomposire reference scheme using n labels is given

in Figure 5.4. Here r,,..r, -are the names of the reference modes, r.’,..r,"

are their expanded 'names, and c,,..,c, are the respective lexical constraints. .
In contrast to our earlier work (NH89), we use commas instead of "+'s as
separators. The label types are not necessarily distinct, and may be named if
desired. If no lexical constraints are given, then each label type is String.

—_ 1 -
L7
: : — l<c >
~' ___/
=4 KON
- // \\
<C,inCp> . —d | <C. >
. N /

has_r,’ ‘
Figure 5.4 Abbreviation of a composité reference scheme
A simple example is given in Figure 5.5.

has_surname -

-~ -~

/ AN
- <a205!

Person N v

. . e
(surname,initials) (-.-Person
\"-—/ . - N
‘ Ve

. A
" <a@20,a3> —-———’\<a3> !
N 7

—

has_initials

- Figure 5,5 The left diagram abbreviates the right diagram

o Unlﬂce some other NIAM hotations, for any given entiry type we never
allow more than one reference scheme to be abbreviated. For example if there
is an injection from SubJect to Subjectcode and another injection from Subject .
to Subjecttitle then only one.of these may be abbreviated (using the scheme of |
Figure 5.1). So a commalist of reference modes always means composite
reference, rather than a list of simple references. '

Althouﬁh conceptually we make no distinction between the abbrewated
and explicit reference forms, in practice we always choose the abbreviated
 form to indicate the primary reference scheme. We treat selection of a
pmmary reference scheme from candidate reference schemes as an implement-
ation concern rather than as a conceptual concern. As will become more
apparent when we discuss derived predicates, this is not the only feature of a
- NIAM “conceptual” schema diagrém' which is captured only at a subconceptual

. level (e.g. a high implemeéntation level).

SEC. 0.1 MEIerence SCremes and rnumbers ' . 5-4

Injective numeric reference schemes may also be abbreviated. In contrast
to our earlier. work (NHS89), the names of numeric reference modes. are
underlmed The reference mode W1th abbreviated name “nr” is reserved for
referencm by means of a number, a’zmenszonless entities which we | do hot wish
to consider to be numbers. The name "nr" may be used with more than one
entity type, but the occurrences are expanded by prepending the name of the
entity type (in lower case) and an underscore to produce unique predicate
names (see Figure 5.6). If a numeric subtype deﬁnitien (e.g. [1..7], {1,2))
is specified beside the entity type this is understood 1o specify the implicit
numeric subtype. In Figure 5.6 we show this as [..]. If no numeric subtype.

definition-is given, Real is assumed. - -

[.] » '. . has_le(A)_nr

® - O®

Figure 5.6 Abbreviating reference of a dimensionless eritity

For example, "Quantity (ur)" and "Rating (nn)" generate the predicates

1" "

".. has_quantity_nr ..." and "... has_rating_nr ..". If desired, a name for
the numeric subtype may be constructed by prependmcr the entity type name to
_nr", e.g. "Rating_nr": if used this must be underlined: If we wish to treat
a dimensionless quantity as a number then its name is underlined and no
reference scheme is spec111ed for it on the dia agram. |

We now examine unzt~basea’ reference modes (e.g.cm, 3). Names of unit-
based reference modes are unique, and never abbreviated. The reference
predicate nan“e is generated by prependirt "... has_" to the reference mode
name (not u‘nderhned) and then appendmc' "_value ...". -See Figure 5.7 (here :
we assume 7 is not "nr"). If no numenc subtype definition is spec1ﬁed then
Real is assumed. In the unhkely case where a name for the numeric subtype is
desired, this may be constructed by prepending "Nr_for_" to the name of the

reference mode (e.g: f’Ni"__for_Mm", "Nr_for_ mm", "Nr_for_$").

L] - | has_r_value

Figure 5.7 Abbrevialing an injective unit-based reference scheme

For example, "Length (cm)” and "Morwey ®" generate the predicates "
has cm. value L and ML has_$_value ...". We use the term "unit-based”

sec. 5.1 Reference schemes and numbers) .' 5-5

liberally to include cases such as "Year (AD)" and "Portion (@)"': these
respectively geherate the predicates "... has_AD_value .." and "..
has_%_value ...". .) T

For convenience we now introduce a metasymbol to facilitate general
discussion about snnple 1nject1ve reference schemes. Here "simple" means
‘neither composite not d153unct1ve (see later). In doing so we summarize the
simple reference translation rules discussed so far.

If a reference mode r is simple, its reference predicate may be

abbreviated as "=".

A generic reading for "x = y" is "x is identified
(under r) by'_‘y"; however its specific reading is determined by the‘cited,
reference mode r in accordance with our earlier abbreviations. See Figure
5.8. Here "a” denores the lowercase version of the name "A". For example, if
"A (" is replaced by "Gender (code)" then "x =, ¥" is replaced by "x
has_gendercode y''. Although "=, " bears some analogy to the equalitjr operator

, clearly "=," is not reflexive, nor symmetric nor transitive.

s>
M

|3

Q

~
Ifl\
/ \
\ !
N

name = has_aname {a = lclA) }
code has_acode {a=IlctA)}
title - has_atitie’ {a=IctA)}
r has_r {r # 'name’,'code’, itle’ }
nr has_a_nr {a= lc(A) }
T - has_r_value {r#‘nr}

Figure 5.8 Summary of simple reference predicate translations

The inclusion‘ of a reference mode for an entity type A implies that
objects of type A are'De_scn'bed; and hence falsifies any direct comparison
b_étwéen an dbject of type A and a number. For example, the.speciﬁcatién "IQ
(or) [0..200]" makes falsé an assertion such as 3Ix(IQ x & x=130); any’
comparisons with a number will have to be made indirectly via the numeric
reference scheme. If IQ is instead specified as the subtype [0..200] then
such assertions are not automati'cally rejected. This choice is made in Figure
5.9. The subtype definitions illustrate indirect and direct comparisons with

numbers.

sec. b.7 Hererence schemes and numbers i 5-6

has_height

[100..200]

x| Ta!lperson X = Eiyz(X has_heighty & y has_cm_ value z & z > 180)1
VX[Gemus X =3Jy(xhas_iqy &y z 150)]

Figure 5.9 indirect and direct comparisons with numbers

~ We do not specify a g_eﬁeral notation for abbreviatin g composite reference
schemes other than the simple lexical case considered earlier. In practice,
“designers may introduce their ov... notations for special _c-ascs.' We suggest an
asterisk then be used to indicate a fuller specification exists elsewhere.
- Forexample, "Date (*ymd)" might abbreviate a schema module in which Date is
uniquely determined by Year (AD) [0..9999], Month (ur) [1..12] and Day (nr)
- [1..31] togé;hcf with other cohstraints (e.g. month sizes), reference schemes
| (e.g. MonthNuame), and derivation rules for subtractis,, dates etc. In this
approach a y<.Tis a single segment of the Umehnc but months-and days have
multiple occurrences. :

In rare cases, we may wish to allow an éntity type to have more than one
unit-based refere.ce mode within the same information system. This rn‘.y arisn
to catér for a gradual tfansition fro.n an old to a new unit system (e.g.
1rnpena1 to metric), or because even with the one entity type different units
are used for difierent contexts. (e.¢. mm, m, km, pc etc.). Scme backﬂwud
discussion is given in NH89 (pp. 169-70). We now discuss a shchtly different
scheme for formalizing such cases. ‘

- A conversion rule specifies how one unit may bc converted to another and_
vice versa. Such a rule may be shown explicitly as a derived fact type »ad
its textual form included Ain the list of derivation rules. Alternatively, the
rule may be abbreviated in equation form and written beside the entity. type
ellipse. . If r is the name of a unit-based reference mode for the entity type_,'
5 is the name of another unit, and f(x) is a function-term of KL then.a
conversion equation between these units may be specified and trenslated into

KL as shown in Figure 5.10.

X8 =7Fxr Vxy(x has_s_value y = x has_r-value f(y))

_Fig.uré 5.10 Defining alternative units for the same entity type

sec. 5.1 Reference schemes and numbers) : ' 5-7

For example, consider the schema fragment shown in Figure 5.11. This
reflects the practice in the Australian lumber 1ndustry, where Cross sect1ona1
measurements are given in millimetres and the reach (IonU dimension) is

measured in metres.

has_reach

3

Pole ~~/ Length
(code) (mm)

X m = 1000*x mm

has_diameter

Figure 5.11 Length may be measur~d in mm or m
The conversion equation translates as:
Vxy(x has_m_value y = x has_mm. value 1000*y)

Notice the "m" beside ths top right-hand role arc in Figure 5.11.- This
aspect cannot be captured conceptually, but has an implementation effect. The
placing of "(mm)" and "m" indicate that mm is the primary reference mode for

-Length, but for input and output the reach is given in metres. ‘The lack of
any unit marker on the diameter role means that diameters are .giveri in the
primary unit (mr-}. - | :

As an example, suppose we wanted to know which poles had areach which
was 50 times their-diameter. Using "{x: ®x}" to denote the set of all x such
that &x, this query may be formulated in a primitive conceptual query lan cruace.
thus:

List {x: 3yzwv(y has_polecode x & y has_diameter w & w has_mm_value z
&y has_reach v & v has_mm_value 50*z) }

If the schema is implemented with reach values in metres, the query phrasc "
has_mm_value 50%z" calls the convérsion rule to compure the mm value from
the stored m value. Axioms introduced later in the chapter enable this query
to be expressed more concisely. _

Sometimes, it is useful to be able to specify a number of subtypzs of the
- same supertype without haviﬁg to draw a separate node for each. Let A be a
described entity type which is numerically referenced by the reference mode r,
where r is either n_r or is unit-based, and let "[.]" dcnotc any bracketed

numeric subtyp?deﬁnition as specified earlier. We allow "[.]" to be

sec. 5.1 Reference schemes and numbers 5-8

written beside a role played by A to specify that this role is played only by
the subtype of A defined in terms of [..]. The general abbreviation scheme is

set out in Figure 5.12.

R r i :] Vx[xeR.i—*Ey’(xzry&ye[..])] '
Figure 5.12 Concisely specifying a numerically referenced subtype

A s1mple example is given in Figure 5.13. Here the test is marked cut of
70 and the exam out of 80. Notice that the numeric constraint on Score must -
cater for all the roles it plays (including the derived role). Without the-
abbreviation just introduced, it would be necessary to explicitly depict nodes
 for TestScore and ExamScore (with the former a subtype of the latter, which
itself is a subtype of Score). If the schema is complete with respéct to the
roles played by Score, the {0..100] constraint may be omitted since it is then
derivable. | | '

Not1ce the use of a predicate dictionary to enable long predicate names
to_be abbreviated within the diagram and the derivation rule. With large
schemas, all the pr‘edicat_eé may be abbreviated as "R,", "R," etc.

[0..100]

Student ®——

T = obtains atest score of -
E = obtains an exam score of
- F = obtains a final score of .

* Uxy[xFy = 3y,y,(XTy, &xEy, &y =y, +y,)]
Figure 5.13 Two-uses of the shorthand notation of Figure 5.12
The specification of the derivation rule requires further discussion,

since so far we have not axiomatized + as an operator between scores (which
here are neither numbers nor strings). We discuss this later in the chapter.

sec. 5.1 Heterence schemes and numbers

If a different unit-based reference mode is also specified on a r_oic' arc
with a [.] constraint, then this mode is used to generate the subtype
definition. For example, with Figure 5.11, a [2..5] constraini next to "m" .

would specify that the reach of u pole must be 2, 3, ‘4"(”)r 5 metres. »

-In rare cases, we may wish to allow an xor referénce scheme, involving an
exclusive cﬁsjunction of two 1:1 reference predicates. We allow such cases to
be abbreviated by parenthesizing the names of the reference mddes, separated
by a stroke "I" (see Figure 5.14). Here r,, r, may be lexical or numeric

reference modes, and =, , =, are their associuted reference predicates.

“ar

~ N
~

rn : /

——— ——— e

Figure 5.14 An xor reference scheme

. For éxamplé, suppose our application deals with the last few thousand
‘years and we wish to allow years to be denoted usin g the Christian convention
(e.g. 500 BC, 1989 AD). This may be set out in shdm or long form as shown in
Figuré 5.15. The use of the "*" in "BC*" is explaincd'later in the chapté’r.

has_AD_vélue -

Year

X) Cardinal
(AD|BC) : ‘ _

has_BC*_vaiue

Figure 515 An example of an xor referznce scheme

*If the reference scheme of Figure 5.15 is used, then year entries shown
in NIAM fact tables must include the "AD" or "BC" suffix. - This suggests an
“alternative way of conceptuzlizing this reference scheme (see Figure 5.16).
Equiv:ﬂence between these schemas can be proved. However, we generally |
prefer the first approach because it simplifies the specification of +, - and
ordering operations on years (see later) as well as separz_itc numeric subtype-
constraints (e.g. [1.,6000] for BC and IO..2000] for AD).

VT, W TIGIGI SIS OWFCIITD Qi LU Iel O B T RN

-has_year_nr

Year @

+ / \\ . -
1 . I{’AD’,'BC'}
/

has_year_suffix

Figure 5.16 "An alternative but ’usua%ly inferior conceptualization

Ina somewhat similar vein, one might concelve of unit- based reference in
terms of a compos1te reference in which the unit is obJecuﬁed For example
Figure 5.17 might be proposed to deal with different units for Length. We
prefer our earlier approach for the same reasons (ezisier_ to specify number-

like operations and related numeric subtypes).

has_length_nr

| Length ' @

' \
: . l{'m'y'mm,}

m————)
has_length_unit

Figure 5.17 A generally inferidrAWay to conceptualize iengths

Informiily, a kind of sub'typincr scheme for all unit-based entities is
sometimes proposed. For examnle an entity type Unit_based_. ent1tv might be.
referenced by predicates to Real and Unit, with subtypes of Lenvth Mass etc.
However, this approach conflicts: with our general philosophy of allowing.
subtypes of the same supertype to be meaninc’fully compared, and it lacks the
simple advantages cited earlier. Hence we téject this approach.. '

- Role-object constraints (sec 4. 3) may be apphed to described objects
via their pnmary reference scheme. If A @) {..a,..} is depicted, where the
reference mode r is either lexical or numeric with associated reference
predicate =, and A plays role i of predicate R, then co.inecting this role arc
via a broken arc to a has the following semantics when a is marked as shown:

{wa.} IxKER)-IylyERi&y= a).

{3} 3’?>_<(R>_<- &x;=.a)

nm J— o
{ma} En»mg_(Ri&xi = _-a)

SEU. 0.4 QUL SPECTS : . 5N

5. 2 Giobai aspects

So far all our mapping rules from NIAM notation to KL have been specified so
that they can be carried out on diagram components independently-of-the-rest
of the dlacrram This incremental approach greatly 91mp11ﬁes the task of
either manual or automated marng. There are some aspects of NIAM dlaorzlms
however that must be interpreted on a ‘plobal rathe; than local Lusis. In
particular, we need to specify mutual exclusion between primitive described
dbject types, and cater for implicit mandatory roles. These luatures are
examined in this section. o '

Earlie: we partitioned the domain into described objecfs, numbers,
strings, peirs and { nill}._' Any mutual exclusion between subtypes of String or -
subtypes of Real is implied by the subtype definitions. Any mutual exclusion
between pair types is implied by exclusion between their corresponding
component typcs‘ or by other constraints, é.g. explicit exclusion constraints
between their role sccjucnccs. In Tare cases, pair types may be explicitly
speciﬁcd as subtypes of other pair types (e.g. differe-it information might be
recorded for (Person,Suhject) pairs according to the suchct) in such cases,
exclusion between <ubts ypes is dcterrmncd from other constraints in the usual
‘way. However, we have yet to consider mutua! exclusion between described
object types. ' ' -

An object fype is primitive iff it is not defined in terms of another
objc ct type, ie. iff it is not a. defined subtype. Rccall,(_scc. 4.1y thet a
described object type appears as a solid clhpsc, with no embedded roles, and
with aname that is not undcrhnea Once the whole conceptual schema diagram

is qvauablc the described ooy,u Types which are primitive max be
identified: their clhpses are not the sources of any subtypc arrows.

For any ‘conceptual schema there will be a finite number of pqmmvc

- described objéct types Al, A, The followmc axioms are ncw obtamcd from
the global CS to spec1fy that the descnbed Ob)ev;o are pamnoncd into thcsc
types

P3 ¥x (Described X+ AXV .. V A X)
P4 VX [~(AX B AX) & ~(AX&AX) & . &~(A,_X&AX)]
‘This partition is portrayed in Ficrure 5. 18, using the prcdicate names as

type names. Each of these primitive types appcars as a solid ellipse on the

Cs dlaﬂram and each may have subtypes.

sec. 5.2 Global aspects : : 5-12

Described objects

A

n

Figure 5,18 Partitioning the described'obj’ects into primitive types

~ Note that the mutual exclusion aspect of parﬁtioning axioms renders
false any assertion thaf objects in different primitive types are equal. For
example, if Person and Department are primitive, the sentence 3xy(Person x &
Department y & ¥ = y) is rejected. Moreover, the behaviour of other
comparison operations (e.g. ') has not been specified between objects of
mutually exclusive types. For example, we have axiomatized < between real
numbers and between strings, but not between real numbers and strings.
Likewise special comparison operations to be defined for described objects

"

will be relativized to the appropriate type, e.g. the predicate ".. is before
or simultaneous with .." might be defined only for :objects of type Date
(further detaﬂs on this matter are discussed in the next section).

"~ Mutual exclusion between primitive object types has been axiomatized. If
subtypes of the same primitive type 'are_:mutually eﬁcclusivc, this is captured
by the subtype definitions. The term "mutually exclusive" should not be

taken to imply that "migration between types” is impossible. For example,

- consider the schema of Figure 5.19. - --

{'C','T'}

Status.
{(code)

Contract_
lecturer

{]
hired il _._.. born on
1 r

a4

Tenured_
lecturer

Contract_lecti;rer =, Lecturer having Status with code 'C’
Tenured_lecturer - = Lecturér having Status with code 'T

Figure 5.19 Migration between *exclusive subtypes" is allowed

sec. 6.2 Global aspects - 518

When this schema is mapped to KL it is easily proved that the subtypes
Contract_lcctufcr and Tenured_lecturer are mutually exclusive.. The key steps
in the proof involve the uniqueness constraint on has_status, the subtype .
definitions, and the inequality "C" # "T". Yet we wish to allow (thankfully!)
that migration‘ from Cohtract_lecturc_:r to Tenured_lecturer is possible. A
superficial analysis might suggest a contradiction here: how can the same
object belong to two mutually exclusive types? '

Brieﬂy, the problem is solved by saying that althorgh we may not assert
that an object:is simultaneously both a contracte. and a tenured lecturer, we
may assert that the object is a contracted lecturer at time #, and a tenured
lecturer at time f,, so long as t, # z,; This is consistent with our earlier
analysis (section 3.1), where each interp~=tation of a CS is a ToD subworld,
and time-dependerit sentences are indexec to thelr time of utterance.

We now consider a notation for spc’cifyih 5 MRCs (mandatory role
constraints) implicitly. This notion:is discussed in our earlier work (NH39,
sec. 6.3), but our present treatment is more reﬁncd, and expands the
allowable range of conceptual schemas. A convention for implicit MRCs is
useful for the following reasons: to enable theorems about modal relationships
between sﬁbschermc to be expressed more concisely without loss of generality;
1o emphasize the more important MRCs; to simplify the drawing of CS diagrams
(by reducing the number of dots, and often a\"oiding the need to connect
disjunctive MRCs); and to encourage avoidance of lazy entities (see later). ‘

. Figure 5.19 has already made use of the implicit MRC notation; but before

discussing this example we set out the general notation. = First note that the
implicit MRC notation may be used with an object type A if and only if both
' the following conditions are satisfied: (1) all the oles played by A in the
global CS are specified; (2) a referenée mode for A is cited in parentheses.
One consequence of condition (2) is that the implicit MRC notation cannot be
used with subtypes, palr types, numeric types, Or string types. Withi our new
approach; reference modes for pair types cannot be cited on a CS diagram.

The simple case is set out in Figure 5.20. Here A is a described object
type with reference mode rm which may be lexical, numeric, composite,
disjunctive or defined (e.g. *ymd). If globally, in addition 10 its ref:rénce

role(s), A plays only the role R.1, an MRC on this role is implied.

SEU. 0.4 JIuudl aSPECLS ’ D-14

IMR1 R e .R)

where globally there are no other roles played by A

Figur 2520 A globally implied mandatory role constraint

The disjunetive case is set out in Figure 5.21. Here, apart from its
reference role(s), A globally plays only roles R.1, ., R,.1. It is implied
that the disjlunction of roles R .1, - R,,.1 is mandatory.

where globally there are no other roles played by A

Figure 5,21 A globally ~implied disjunctive MRC -

As indicated, we refer to these global abbreviation rules for implied
MRCs as IMRI and IMR2. If Figure 5.19 includes all the roles played by
‘Status, Lecturer and Date in the global ‘schema, then IMR1 tells us that both
the roles in the has_status predicate are mandatory. Although globally the
dot on Lecturer could have been omitted since it is implied, we recommend
including it to emphasize that the subtype'deﬁnino role 1s mandatory. IMR2
tells us that, if Date plays no other roles globally, the dlS_]unC tion of the
two non-reference roles played by Date is mandatory. ' '»

JImplicit MRC notation is not used with numeric or string ~hject types,
since we do not wish to assert MRCs for such types (which often include
- overlapping subtypes anyway). The notation is not used for subtypes or pair
types, siuce we do not-count it as remarkable for a role played by a subtype
or pair type to be optional (for that type). Let us use the term plain entity
nype (PET) to mean a primitive, described object type. Parenthesized
reference modes may be cited only for PETS. Hence IMR1 a2nd IMR2 apply only to
PETs.

Itis very unusual to 1nclude in a schema.any PET which does not play a
manaatory role (or role disjunction) other than the toles needed 10 assert its
- existence. Indeed, in NH89 we effectively made_ it a CS formation rule that
each PET had to play some role (or role disjunction) other than its reference
tole(s). .The philosophy behind this .appr0ach was that there is little poinft

SCL. V. LAl aspSLLS . o-i2

in positing an object unless it actually does something. For reasons given
below, we no longer feel this should be a conceptual requirement, and have

downgraded the status of this viewpoint from a CS formation rule to an

implementation warning.

We call a described object which "does nothing" a lazy entity (i.e. the
only thing known about a lazy entity is that it exists). An entity type which
allows lazy instances 1is -é lazy entity rype (LET). To discourage the designer
from allowing LETS except in exceptional cases, we. makcyit a formation rule
that LETs must have their reference schemes specified explicitly, i.e. these
schemes must not be abbreviated by parenthesized reference modes. To take an
extreme example, Figure 5.22 shows one legal but boring global conceptu.al
schema diagram. - Here Lecturer is a lazy ‘enti'ty type, since its only non-
referential role is optional. In this UoD we allow that we know the name of

some lecturers but not their status.

/ héS

has_surname

Figure 5.2 An unusual example where some lecturers are "lazy”

Note that 1t would be incorrect to try to abbreviate this global schema
by parenthesizing the reference mode of Lecturer. If we did this, the
has_status role would be implicitly mandatory (cf. Figure 5.19). There are
two main reasens for allowing the possibility of lazy entities. Firstly, they
are sometimes needed in practical applications (e.g. we might only know the -
surname of a lecturer and still want to record this in-formétion): attempts to
hangie such situations without lazy entities by adding' a unary predicate
"exists" suffer the logical problems of trying to treat existence as a
predicate. Secendly, the formal inclusion of LETs enatles a mors uniform’
treatment of conéeptual schema transformations. .

 We define an active entity to be an entity which plays at least some role
other than its reference role(s). So an entity is active if and only if it is
not lazy. Typically, a lazy entity tvpe may include some active ertities,
e.g. Lecturer in Figure 5.22 may. be instantiated by objects who also
instantiate the has_status role. Though of litde practical significance, we

allow the possibility of described objéct types with no active entities. Such

VWL W LTIV TGO []

entity types are called completely lazy entity types (CLETS). An extreme
example is obtained by removing the has_status predicate and the Status object
type from the UoD of Figure 5.22. If has_surname is the only role globally
playcd by Lecturer, then Lecturer is a CLET. Note tha't"Wﬁjé“Eﬁ'Bfop"éé"'"ar“ia““
pair types may be LETs they may never be CLETs. Moreover, even CLETS must
have a mandatory 1:1 reference scheme.

We conclude this section by adding a further craphlc notatlon which
implifies the drawing of large schemas. Sometimes, an object type (e.g.,
Date, Money) may play so many roles in the global schema that it is awkward to
connect all the relevant role arcs to the ellipse for this object type. In
this situation we allow, as an alternative, that the object type may be
displayed several times, using a double ellipse. Optionally, the notation "n
of m" may be added to indicate this is the nth occurrence of the obj Ject type

out of a total of m occurrences (see qure 5.23).

@. 3065 -

e

Figure 5.23 Double ellipse notation allows__i’nultiple occurrences

In this case any man_datdry role do: is intexpfeted as applying to the
whole object type. However, before applying the globally irriplicd mandatory
role constraint rules (IMR1-2), all the roles collectively played by all the

occurrences of the ochct type: need 10 be included.

5.3 Derivation rules

Besides fact types and constraints, a conceptual schema may include derivation
rules. In this section we illustratc‘how‘déﬁvaﬁoh rules may be formulated
~in KL. The +, - and < operators are "axiomatized for most numerically
referenced entities, and used to facilitate the specification of derivation
rules and textual constraints. Finally we contrast subset and equality
constraints with derivation riles. . | '
Basicall}r;- a denvation ruic is a scntencé which defines, at least
partly, a predicate of a function. For example, we might define the dsrived
predicate father_of in terms.of the predicates parent of and has_gender.
Although in some contexts the term "derivation rule” is used as an alias for
“Inference rule”, we do not treat these terms as synonyms. Modus Ponens is an

inference rule (or transformation rule) but not a derivation rule.

OCOWw. WV LCHIYAQUIIT 1JICO . . LSl I¥ §

Derived predicates and functions are often depictéd graphically in terms
of asterisked box-chains. In any case, they must be specified textually as
derivziﬁon rules, and any lexical or numeric constraints on associated object
' types must still permit the derived values (recall Figure 5.13). In our
formalization, a derivation rule must take the form of ‘a universally .
quantified bico_nditionai or a universally quantiﬁed conditional. In
practice, biconditionals are typically far more common, so we examine these
first. Consider Figure 5.24. This might be part of a schema used by a book
_retailer Here the profit on a book is denved by subtracting its cost price
from its retail price. Braces may be used with derivation rules to enclose
* comments: these are intended only for humans, and are ignored when mapping

to KL. ' '

A costs
T
Book e Jdsells_for L Money
(isbn) S : $)
: T
‘has_;?roﬂt

* { prcfit = saies pnf*e cost price }
xyl x has_profit y = Jzw(Xx costs z & x sells_forw & y = w-z I

Figure 5.24 Comments may be included in braces

Notice thc,tcim "w-z". We have not yet axiomatized - for Money chjects
Our earlier example of adding scores (Figure 5.13) is similar. ‘In both cases
we have a numeri ca[[}5 referenced entiry zype’(here, Mohey and Score) for which
we found it convenient to use - or - as operators for addition or subtraction
‘on this type. We resei'vc the term NRE (numerically referenced entity) for
objects belonging to a type with an injective reference link to Real. To
facilitate the formulation of derivation rules involving NRE types we now
axiomatize +, - and = for such types. |

Let A be a primitive NRE type which is numencally referenced by the
reference mode r, which is either nr or is unit-based (but not asterisked: see
later). Let =_denote the associated reference predicate (has_. IC(A) nr or
has_r. value) Then for each specific Cs, the followmc axioms are aud‘=d for.

each such A mcluded in it..

NRE+ Vxyz[Ax & Ay & Az & z = x+y = |
3xvz(x~ X &y= vl&zzrzl&zl-*—xﬁyl)]_'

SecC. o.s ervauon ruies : o=

NRE- Vxyz[Ax & Ay & Az & z = x-y. =
Exlylzl(X=X &y=, Y, &z=, Z & Z, =Xy,)]

NREx Vxy[AX&Ay=(xsy=
axlyl(‘x zr X.\ & Y zr yl &xl = yl))]

Apart from exceptional cases to be discussed later, these axioms define
addition, subtraction and ordering of numerically referenced entities of the
same type in terms of adding, subtracting or ordering the real numbers with
which they are in I1:1 comrespondence via the Teference predicate. This
predicate may be depicted irriplicitly with a reference mode, or explicitly. If
the reference mode notation is not used, and more than one injective reference
to Real is specified, then we pick the reference predicate whose name is
alphabetically prior. Each specific CS will have its own specific NRE+, NRE- -
and NRE< axiom lists. ' , o |

Although the Reals are closed under + and -, the same cannot generally be
said for NRE types, e.g. 100°C and 500°C are temperatures but -400°C. is not
(at least according to current physics). We take the referent of such out-of-’
range exprcséiong to be nil. Note that with our untyped calculus, any term of
the form x+y will refer once x and y have been assigned a value; so the main
aspect of NRE+ is 1o specify when A x+y. ‘Note also that A f(2;,..2) is
equivalent to Ix[x=fla,,..,a;) & Ax]. Given the other constraints on the
referential predicate, the only extra information gained from using Nt
instead of "+" in axiom NRE+ 18 tha; when the right opcrazid of "=" 1s true, z
= x+y (this rules.out the possibility that ~A x+y). A similar comment applies
toNRE-, . S o

‘From NRE+ and the real'ﬁeld,axiomsv RF1-2 it follows that addition_bf
numerically referenced entities 1s commutative and associa'tiv_e. We have
already specified that = is transitive and antisymmetric for any type (axioms
TO1-2). From NRE< and RTO3 it follows that < provides a total order for any
non-asterisked NRE type. We do not define +, - or < for described entities
that are nol NREs. Neither do we define + or - or < between different
primitive NRE types, or between these types and numbers or strings. Moreover,
we do not generally define other numeric operations such as * and / for NREs
since these will not always be meaningful (e.g. multiplying two temperatures)
and the result of such an operation may not be of the same type (e.g. length *
lenigth —- area). _ o '

In the next chapter, we develop the notion of equivalence between

conceptual schemas in terms of logical equivalence. So conceptually there are

a number of equivalent ways of specifying biconditionality dependencies (cf.
degrees of freedom in an equation). For example, consider Figure 5.25. This
is like Figure 5.24, except the sale price is derived by adding the profit to

the cost price, and UCs and MRCs are given for has_profit but not for
4 sells_for.

/ costs

T * '
sells for @
|

L
has;?roﬁt

* { sales price = cost price + profit }
Vxy[x sells_fory = Jzw({ x costs z & x has_profitw & y = z+w)]

Figure 5.25 This describes the same UoD as Figure 5.24 .

Thé equivalence between the subschemas in Figures 5.24 and 5.25 may be
demonstrated with a deduction tree. Although logically equivalent, these
schemas lead to different implementations, e.g. profit facts are derived in
one but stored in the other. - | »

So far all the constraints we have examihcd have been depicted
diagrammatically: we call these graphic constraints. Other constraints may be
specified by means of (possibly abbreviated) KL formulae : we call these
textual cqnsrrai;Q;iS' (TCs). These may be written below the diagram, with
e}iplanatory commments in braces. The axiomatization of +, - and < for NREs
often simplifies. the. formulation of textual constraints. Figure 5.26 provides

" one example..

. born_in

Year
(AD)

died_in

TC1: { one’s birthyr occurs on or before one’s qeéthyr }
Vxy,y,(x born_ir. y .&x died_iny, =y, <vy,)

Figure 5.26 A textyal constraint

sec. 5.3 Derivation rules ‘ , - 520

Now suppose that instead of using AD as the reference mode for Year we
-used BC. The constraint TC1 would no longer Be correct, since with the BC
scheme the smaller the number the later the year (e.g. 100 BC is earlier than -
50 BC). Ciearly, here is a case where the NRE+-< axioms do not apply.
Another example is the standard astronomical method of measuring absolute
magnitude (the more negaﬁve the number the brighter the star). Such
exceptions were foreshadowed. To prevent the NRE axioms being incorrectly
applied to such unusual reference schemes, we demand that the names of such
reference modes or reference predicates be asterisked (e.g. "BC*"). Recall
that asterisked reference schemes were excluded from the NRE+- axiom lists.
We léave it to the designer to specify specialized axioms for. such rere,
| exceptienal cases if this is desired. For example, the NRE< axiom could be

it

adapted for BC* by replacing "x <y " with "x, 2 y,".

- Though it is never necessary, it is often convenient to .xpress some
derivation rules in functional notation rather than defining an equivalent
predicate formulation. As an example, which also illustrates that it is
useful to allow relationships between lexical objects,co’hsiclér Figure 5.27.
Here upcase is a derived function, which accepts a string argument and retumns
‘the string with all its lower-case letters sh1fted into upper-case. For
example upcase(phd") = 'PHD' and upcase('PhD') = 'PHD". Though such
functions may be depicted graphically as predicates using asterisked braces as .

shown, usually they are omitted from the CS diagram.

r—\

i Stnng:

T

| * { upcase(x) }

has_upcase_form

-* { upcase(x) }
Vxy[Char x & Chary - (y = upcase(x) =
ord(x) € [97..122] & ord(y) = ord(x)-32 V ord(x é [97 122] & X y)] ‘
Vxy[String x & String y = (y = upcase(x) = o
head(y) = upcase(head(x)) & rest(y) = upsase(restixj) j]

‘Figure 5.27 A derived predicaté expfess_ed in functional notation

In rare cases; dem ation Tules may take the form of a conditional rather

than a biconditional. As a simple example, consider the subschema of l*wure

;5 28. The:e are several things to note about this example. First, to enable
“the predicate bemc defined to be written first, we inwoduce "if" as the.

p*oposmonal operator for "is matenallv implied by, e given any wifs a

R L AR AV R S VTVIN P A RV T VIV . . (S =N |

and B, ¢ if 8 =, o~ 8. We also allow "«" as a variant for "i if", and "iff".

H__H

as a variant for

A

kK

Person \
{riame)

—— Theist
L

x
e }
a
c

I
** yx(Theist x if Christian x V Hiridu x)

Figure 5,28 Conditional derivation rules are marked ****

Note that two asterisks are used instead of the usual one. We make it a
Cs formation rule that biconditional derivation rules be singly asterisked,
and conditional derivation rules be doubly asterisked. This new notation
suggests that there is more being specified than just a simple derivation
rule. - Placing two asterisks besides a predicate indicates that the derivation
-Tule provides only a partzal definition of the pred_lcatc This is rcﬂectcd_
in the use of "if" rather than "iff".

In this UoD it is possible that some people are known to be theists
- without being known to be Christian or Hindu (e.g. fhcy might be Jewish, or we
might simply not know what their religion is). . ‘With this schema, it is
consistent to assert that a pérson is a theist without asserting that he or
she is a Christian or Hindu. - From the implementation viewpoint, this means
that doubiy asterisked predicates may be partly derived and p‘arﬂy stored.

On. a'CS 'diagrafn no predicate (asteriskéd or net) may appear more than
once. .HoWeycr, when a derivation rule is specified textually, more than one
formula may be used (e.g. upcase(x)): in this case the derivation rule is the
conjunction of these formulae. If the predicate is singly or doubly
asterisked, each such formula must be a biconditional or conditional
respectively. Unlike some systems (e.g. closed world Prolog), we do not tfeat
the conjunction of conditionals as implicitl'y‘ a biconditional. For example,
if the derivation rule for Theist is Vx(Theist x if Christian x) & Vx(Theist x
if Hindu x), this is not to be interpreted as vx(Theist x iff Christian x V
Hindu. x).. If the latter interpretation is intended, the predicate must be
' smcrly asterisked and defined as this biconditional.

Any doubly asteiis sked predicate must be included on the CS diagram with
all its constrainis marked. Moreover, these -constraints must b. ranslated
into KL vather than being ignored, since the der vation rule spcmﬁcc only
part of the prcdlcatc From the 1rnplcrncntat10n viewpoint, for any state of -
the knowledge base the constraints apply to the combined populanon of stored

and derived instances of the predicate. Since the stored instances can affect
the constraint satisfaction of this population, the constraints are not
implied by a correctly formulated derivation rule (unhke the biconditional

case). For example, consider Figure 5.29.

grandparent_of *x o
L as,it

—
parenlt_of _

——
1;2

as,it

*% /‘v’xz[X grandparent_of z if Jy(x parent_ofy &y parent_of 2)]

Figure 5.28 Constraints on stored part of **are not implied

The grandparent_of predicate is often used in Proiog texts as a’par.adigm
case of a partly stored and partly derived predicate. Besides the .
'gra_ndparenthood information derived from parenthood facts, this approach

* allows the assertion of grandparenthood facts for those cases where we might
~ not know who any of the intermediate parents are. The population of’
grandparent_of (including these stored faets) must obey the constraints.

Note that our double asterisk hotation replaces our earlier notation
(NH89 sec. 9.3) where we allowed a predicate to be shown twice on a diagrarn
'(once for stored and once for derived). The old -notation is no longer
pemltted ‘Our new approach leads to simpler diagrams, and to derivation
rules b.elnfr clearly specified as biconditionals (*) apart from exceptlonal
cases (”‘*) | , . .

In some, but not all, cases the same feature of a UoD may be captured by: |
either a biconditional/conditional derivation rule or an equality/subset
constraint. We now identify and provide design guidelines for these cases,
beginning with equality constraints, The general case is set out in Figure |
5.30. We describe this by saying that at least one of the operands of the
equality constraint is a whole predicate. Here, the whole predleate S is one-
of the operands ’

uuuuuu (A TN JV I IV A NIV } . VLD

S 1 '2 n . wherenz 1

R[_ I _ »/'24_ iy _:|
Figure 5.30" ..An equality constraint with a whole predicate operand

The ‘equality constraint translates into the quantified ‘biconditional
- formula shown in Fi gure 5.31, where this UoD feature has now been setoutasa
derivation rule. We generally recommend the derivation rule version since its

implementation avoids the need to store the predicate S.

S |1 |2 n wheren = 1

R [_ i _ i - I _:|

VX S%.x, = T2RZ &%, = 2 & X =2)]

- Figure 5.31 Equivalent and usually preferable to diagram 5.30

For example, in Figure 5.32 the right hand version is usually preferred.
In this UoD we cannot know that a person was an Olympian in a particular sport
unless we know one of the ycérs in which this occurred. -

)

, * ny(xOy =3z d(y'i)
O = .. was_Olympian_in .. ' . ' ,
C = .. competed in .. in Olympic Games of ..

Figure 5.32 The right hand version is u}suallyV preferred

In the rare cases w_hére both operands of an cquality constraint are whole
predicates, either predicate mély be selected as derived. For example, suppose
people own a car if and only if they drive it. If it is desired to use both
p‘redicétes Owns and Drives, one could be stored and updated while the other is

“derived from VXy(x owns y = x drives y).

sec. 5.3 Derivation rufes _ ' ‘ : : o 5-24

If neither operand of an equality constraint is a whole predicate, then
we cannot recast this as a derivation rule. For example, if we want to know a
person’s resting heart rate if and only if we also want to know their reaction | |
time then we specify this by means of an equality constraint between the first
roles-of has_resting_heart_rate and has._reéction_time (see NHS9, p. 172.).. We
cannot specify a derivation rule to enable a person’s reaction time to be
determined from their resting heart rate. ' o
- Let .uS now consider subset constraints. First note that, being uni-
directional, a subset constraint cannot éxprcss a biconditionality. In
situations where an iff is required, we usually specify a derivation rule (or
a subtype if subtype-specific knowledge is required). For example, suppose we
want to know whether a person is a genius, and this can be precisely defined
by the person’s IQ. If there is something we wish to Imow only about geniuses
then we create a subtype for Genius with this specific role attached (recall
Figure 5.9). However if there is no s'uch:speciﬁc': role we simply specify a
derivation rule for GeniliS‘ this will be identical to the formulation of a
subtype definition for Gemus e.g. Vx[Genius x = Jy(x has_iq y & y 2 130 i
We cannot handle this case with a subset constraint.
- With a subset constraint, the role sequence which is the operand pointed
to by'thev subset ar;dw is called the -targer operand. In Figure 533 the
target operand of a subset constraint is a_v'v_hole predicate.

S|t 12| |n A ' where n 2 1

R ‘[:_ il _ i2_,. _ in _]
Figure 5.33 The target operand is a wholge predicate

* This subset constraint translates into the formula shown as a conditional |
derivation rule in Figure 5.34. Although conceptually, both ﬁguresls.pecify
the{ same UoD, the subset constraint version is usually preferable from the
point of view of implementation. |

One example is our Olympian schema, modified by replacing the equality
constraint with a subset constraint (so we can know a PETSON w.as An Olympian

in a sport without knowing when this happened).

O-&£O

S |1 2 n where n 2 1

B i W]]

XS4 I 32(RZ BX, = 2 BB, = 2;)]

Fi'gu'ré'5.34 Equivalent to but often tess preferable than 5.33

A simpler example, based on a case we discussed in NH89 (p; 206), is
gi{/en in Figure 5.35: In this UoD if a person drives a car then that person
owns that car. The subset constraint approach is adopted in the left-hand
schema: here both the operands of the subset constraint are whole predicates.
The subset constraint may be translated into XL as the formula used to specify
the derivation rule in the right-hand schema. Another alternative is;v to

attach Drives as a unary to (Person,Car) pairs in the Owns relation.

— T s

owns owns ,
+
i

driveg drives

T Yy (x drivesy = X ownsy)

Figure 5.35 Both schema diagramé portray the same UoD feature

o In NH89 we treated constraints &3 applying to the (Stor._cd) database. We

' now treat constraints as applying to the UoD and hence thc.lmowlcdgc'bﬁsc ~
(what is known rather than what is stored). Which facts are stored and which
are derived 1s not-a conceptﬁal'issuc: it makes n'o_ difference ‘to the UoD.
Hence to capture the UoD fcatﬁre_‘that‘pe:oplc own any car they drive, the
designer may choose either of the schema diagrams shown in Figure 5.35. Both
map to the same set of KL formulae (though we also copy the asterisks over
with dcrivatioﬁ rules as an implemcntatioh directive to be acted on later).

| When it comes to implementing a conceptual schema, we must make a

~decision as to what'is to be stored or derived. At this implementation level
we treat the diagrams differently. Consider the binary Olympiar. fact type in
Figure 5.32. With the equality constraint, OIyﬁipian facts are actually stored
and the constraint is enforced on relevant uﬁdat'es. With the derivation rule
approach, the Vbinary 'Olympian' facts are not stored but .are derived when

D-£L0

B L T

relevant queries are issued. For further discussion on various ways of
implementing the two approaches with the owner-driver example, see NHS9 (pp.
206-211, but recall that the -diagram notation used there has been supcrceded
by our new approach). : I
~ In NHB89 (pp. 184-90) we classified relational properties as positive or
negative according to- whether the property could be used to deduce other
(positive) facts or the negatioﬁs of such facts. For example, reflexivity,
symmetry and transitivity are positive whereas ir'rcﬂcxivity,: asymmetry and
‘intfansitivity are negative. | We suggested that negative properties. be
implemented as database constraints, but described how positive properties
could be implemented as database constraints or conditional derivation rules.
| The subset case that we have just examined fits within the general
categery -of positive relational properties (though here two relations are
>-in'volved) “As a further implementation choice, itA is always possible to
replace a partially derived predicate by a stored predlcatc (uscd for updates)
and a differently named fully derived prcchcatc (uscd for ouencs) e.g. see
* our Synonym example (NHS9 p. 186). _ ‘
The general issue of whether to-implement a feature by means of a
' database constréint or a derivation rule has been addressed by a number of
: réscarchcrs. A good overview of this research is provided by Gallaire, Minker
and Nicolas (1984, pp; 173—5). We feel that our analysis has shed further
light on this issue, by focussing on the nature of the dc_riVation rule
(bicovnditionalv Vs cOri_ditional), identifying the cases Where the design choice
exists, and providinc design guidelines. for these cases. ' For NIAM in
particular, our. analys1s adds a further class of conceptual cquwalencc

© the crems, Whl(" are formally provable in our systern

5.4 The database »a_nd definite descriptions

Recall that 2 knowledge base consists of a conceptual schema and 2 database.
We have seen how a NIAM conceptual schema may be specified in KL. In this
section we examine how the contents of a database state may be specified, and
provide a more detailed account of definite descriptions.

Typically, a conceptual database state is a set of elementary facts. To
begin with, an elemenrary fact is an assertion that one or more objects

1nstant1ate some predlcate Thus any clementary fact may be expressed in the

e e sa7

form Ro,..0, where R is an n-ary predicate (n z 1) and o,, .., 0, are object
designators (i.e. each identifies an object in the domain of discourse).
. Moreover, an elementary fact cannot be rephrased as a conjunction of smaller

facts without loss of information. :
If a significant fact population is provided, elementariness- can be
. verified by the projection-join check (see NH89 sec. 5.3); however the claim

of significance relies on the intuitive understanding of the UoD expert who
makes the claim. On the other hand, simple checks are available to show some

classes of fact types are not elementary (e.g. if two roles are not spanned by
a UC then the fact type is not elementary; and a predicate used for a pair
type must have a full length UC (NHB89, sec. 5.2).

Since ‘elementarity has been discussed at length in NHS$9, and is not in
general formeclly decidable, we do not dwell on the notion here. Instead, we
address ourselves to the syntactical question of what is acceptable as a
candidate elementary fact.” We begin with a simple example (see Figure 5.36).
One advantage of NIAM is that populations of fact-types (stored or derived)
may be conveniently displayed in faczitablcs beside the fact-types. A
knowledge-base diagram (KB diagram) depicts a concéptual subschema as well
as a sample population. In NH89, KB diagrams Wcré called "schema-base

diagrams".

was_born_in

Lecturer
{surname)

‘Halpin | 1946
Jones | 1846.
Wang | 1950

~ Figure 536 A simple knowledge-b3e diagram

The first row of fhe fact-table in Figure 5.36 is read as the following’

elementary fact:
F1: The Lecturer with surname 'Halpin' was born in the Year 1946 AD.

Such high level fact readings are determined by the following Read Fact
Algorithm (RFA).

STC. D4 1 IC Udlauase driu genine aescripuorts o-28

Predicates are unabbreviated where rélevant (see previous chapter);'
Predicates are written with spaces for underscores; -
Table entries are assigned their roles (predicate places).by position; oo
Each wble cniry e is assocmL.d w1Lh is object type A;
If 4 is lexical then ¢ — 'e';
IfAis numcnc or the reference mode is nr then e is unchanged;
In all other unnesicd cases a reference mode r is supplied for 4’
~ and table entries are rephrased as follows '

A (r) e— the A with r '¢’

Ale —theder

A(ry)— the Awithr,'e, and .. and r,, 'e,";
If A is a pair type, then if the entry is (e,,..,¢,,) this is rephrased
as (e, ,...e,,’) { where the ¢;’ are as stated in RFA (recursive))
The rephrased entries are writlen in place;
The first letter 01" the resuit .3 capitalized, and a period. app“ndcd

F1 may be viewed as. the infix elementary fact o Ro,, where R = .
' was _born_in ..., 0, = the Lecturer with surname ‘Halpin’, and o, = the Year
1946 AD. Here the obJect des1cnators are definite descriptions: this is
always the case for descnbed entities. RFA indicates how such descriptions
may be generated from the table entries (here: "Halpin", "1946") in the
c'ontext of the schema. If the objects. are sﬁ-lngs or numbers, they are
designated by string "constants" Or numeric "constants”.

This use of definite descriptions is a departure from conventional
formalizations of databases, which uniealistically adopt "unique name axioms"
‘in which all individuals are denoted by unlque unstructured, proper namie
(e.g: see Gallaire, Minker & N1co;as 1984, p. 160; Landbe:r<r 1983, p. 91).
Note also that the same ObJCCt may be.referenced by different descﬂptions
(e.s. "the. subject with subJectcode ‘CSllZ"'_} and "the subjéct with
subJecttltle ‘Introduction to Informatlon Systems may refer to the same
object). . | ‘
' As discussed earliér, all our reference schemes are injectve. When KB
diagrams are used, we demand that a parenthesized reference mode (simple,
composite or xor) be cited for each plain entity type: this provides its
primary reference schieme forv implementation. For a given knowledge base
state, any definite description generated by RFA refers to exactly one object.
For our static analysis these definite descriptions may be regarded as
"structured individual constants".

If comparisons between objects are miade across states, then the question
arises as to whether these definite descn'ptions provide rigi.d designators .

629

(i.e. must they refer to the same object in all states?). .Clearly, this will
usually be the intent (e.g. "the Year 1946 AD"). If flexible designators .ar‘c
permitted then these must be qualified before object comparisons between
states are made (e.g. "the Lcctﬁrer with surname 'Halpin'-at time-t").——- - —ee
Our static analysis of reference schemes does perm’* the same string or
number to be used within desc.rirﬁ'“'st of different objects. For example,
"Brisbane” may be used as a sﬁmamc and ‘a cityname within the same
application. Q7 course the object referred to as "the Person with surname

1t

‘Brisbane’ cannot be the same as the object referred to as "the City with
cityname ‘Brisbane’, since our specific partition axioms would include an
assertion that Person and City are disjoint object types. Nevcrshcless' it 1s
both meaningiul and simple in our formalization to make indirect connections
between obiects of disjoint types via the strings or numbers used in their
descriptions. Ior example, allowing any single lower-case letter as an IV in

our primitive query language:

List the surnames of those who live in a city w1th the same name.
List {n: ch(p has_sumame n &p lives_in ¢ & ¢ has_cityname n)}

List the surnames of anyone whose mass in kg is numencally greater

than his/ter heigh, in cm.

List {m: pmxh(p has_sirname n & p weighs m & mhas_kg_value x -
‘ & p hias neighch & .las_cm_value X))}

Althoucrh RPA prov1d a convenient fact formulation for human read-
ab111ty and commumcatlon ‘it is not actually used when the fact ‘table is
translated into KL. We now explain how the fact entries are translated, and . -
'clanfy the theory of definite descriptions we are using. A KB‘d1agTarn 1s

- translated in two stages: first the schema is translated into KL; then the
fact entries are translated. Frorn"our:'c:a:lier work, and ignbrin’g the generic
CS axioms, the schema may be translated as in Figure 5.37. If the schema were
global, further axioms would be needed (e.g. 1mphed MRCs).

Notice how the fact entries have beer: translated. Instead of a deﬁmte
description formulati tion, simple existential formulae have been used. For

M_nple fact f1 may be read as fol'ows (compare this with F1):

Some object with sﬁrname_ 'Halpin' was born in an object with AD value 1946.

R I R R e el e L R LI SR LR ROy By OV O IS O-ou

was_born_in

Lecturer ' Year
(surname) (AD)

Halpin 1946
“Jones 1946
Wang 1950 |’

schema:
1 Vx{iecturer x V-Year x - Described x)

Vx ~{Lesturer x & Year x)

Vxy(x was_born_in y - Lecturer x & Yeary)
Vxyz(x was_born_iny &xwas_born_inz-+y = z)
Vxy(x has_surname y - Lecturer x & Stringy)
Vx{ Lecturer x =+ 3ly x has_surname y)

"Vy3?x x has_surname y : :
Vxy(x has_AD_value y - Year x & Real y)

¥x(Year x = 3ly x has_AD_value y) -

VYy3?xx has_AD value y

NRE+-< for AD

S 00 ONOOA®N

-l ek

fact table:

f1 3xy(x has_surname *Halpin' & y has_AD_value 1946 & x was_ born in y)
f2 3xy(x has_surname 'Jones’ &y has_AD_value 1946 & x was_born_iny)’
t3 3xy(x has_surname 'Wang’ & y has_AD_value 1950 & x was_born_in y)

Figure 5.37 Translating a KB diagram

The reading cited for fact fl 1is all that is required, since the schema .

(hnes 3,5-10) Drowdes the required context 10 ensure that there is exactly

one ObJCCL with surname ‘Hd‘nm “and *~at this object is a Lecturer, and that ‘

there is exactly one object which has AD valup 1946 and that this object 1s a
Year. Thi: zxistential translation, in the context of our schemd tran‘_slatlon,

provides the precise semantics for the definite descn'ption fact readings

syntactically generated by RFA. This analy51s crenerahzes strawhtforwardly;l

to handle any n- ary elementary fact.
Our account- of definite . descriptions entails that such descnpuons

alWays succeed in referring (just as individual constants and ground function. -

terms do). Earlier we included nil as a referent for garbage terms (e.g.
"a"™2). In some‘:malyse.: '(c.g. ISO 1982, p. F-13) a ‘similar 1e -ferent ‘is
proposf:d far "impossible objects” e.g. square circles. With our approach, no
- described object can be nil. We place the onus on the deswner to refrain
from introducing 1n‘p0551ble predicates; since the system has no formnal means
of Cztecting sich absurdities, if they are used they will be taken to refer
(e.g., "the Squarecircle with squarecirclename ‘A’"). In practice, if such an

SUL. vt 110 vaauass anu USHHHIG USSUHIIJUUIND o~

unlikely predicate is introduced, to keep our formal system compatible with
possible world semantics we can always interpret the predicate in such a way
as to make it possible. ' '

Of more relevance is the possibility of definite descriptions which do

not refer to real world objects, e.g. "the President with surname ‘Raygun’".
Again, we demand that such descnptlons do refer. 'Recall our portrayal of a

UoD as a set of poss1ble subworlds. In some possible worlds a president with

this surname does exist. Our analysis of singular terms (including definite

descriptions) ensures that there is at least one possible subworld in which

such terms do refer. This is all we need. While the conceptual information -

processor can ensure that the database is consistent with the CS supplied to

it, it cannot ensure that the database is factual.

The treatment of definite descriptions is 1rnportant since our ““fharlymcr
formal proof mechanism (deduction trees) relies on successful reference. If
instead we had adopted the Russellian theory of definite desériptions and
generated a branch formula such as (7x)Ax # (7X)AX, this is merely equivalent
to ~31xAx and docs not imply closure (e.g. see Renme & Girle 1973, p..215).

Hilbert’s wqalys1s of £ could be used, since it g.larantees reference and hence

closure in this case. With o_ﬁr approach, no special operétors for definite
“description are needed, and the non-identity of any ground term implies
ciosure. A useful discussion of philosophical issues concerning singular
terms is provided by Haack (1978, pp. 56-73). |

Our earlier example of a KB dJacTam is typlcal in that the ellipses

dep1cted described. object types. However some or all of the elhpses may -

depic'_cv' Numeric or string types.A Since our treatment of these possibilities
differs from conventional NIAM, we discuss a few examples. Relationships
‘between described and numeric objects must surely be admitted (e.g: F2-3)_, as
well as relanonships between described and lexical .objects (e.g. F4-5).

F2: Person (surname) 'Jones knows_the kanji_ for3

" F3: Person (surname) 'Jones' has_IQ 120.
F4: Employee (emiz#) '12545' has_employee_name 'Jones, E'.
F5: Person (surname) 'Jones' cannot _spell 'conceptualizaticn'.

o In the approach of Falkenberg (1986), any relationship betwee. a non-
lexical object and a lexical object is classified as a reference rather than

as a fact. However, we feel tha';'it is more natural to treat examples like

~ F4-5 as facts rather than as references.

e et e A

v
!
!

. _ - .
i ———— WS L UG AU TS 5-32

In principle, we permit relationships between numbers, though in practice
these would tend to be derived rather than stored, e.g. 45 has_factor 5.
Relationships between strings may also be derived (e.g. upcase). In some
cases, we may wish to store relationships between Suifi;g_s:fé—.é.W"*zﬁxgbrréviatc'.
has_synonym 'shorten’ (see NH89, pp. 185-7).

With fact tables, the objecrs being described are always Stn'ngs, numbers
or described objects with parenthesized reference modes. If the relationship
type includes a described obi=nt f_vpe'with. no parenthesized reference mode,
then for communication purposes one may enter a special symbol to denote the
described object. For example, the population of a 1:1 reference type may be
portrayed explicitly ina reference diagram as shown in Figure 5.38.

The table below the 'schcfnais a reference table. Here Halpin, Jones and
Wang are depicted by stick figures. In the context of a lexical reference -
scheme one couid instead depict dcscribcd entities 'byAunquotcd strings (Halpin
etc.); however, this would not work for NREs. Note that quotes are required
around the entries in the right-hand column since these are being used here to
denote strings. | - A

has_surname -

\'\ s
ﬁ" "Halpin' .
£ |'Jones'
£ 'Wang'

Figure 5.38 A reference diagram

While referenc. tables are mainly used to hclp users understand reference
schemies, they may also be used to add simplé;existe}zce facts to the knowledge
base for thosé rare cases involvirig lazy entities. Forvcxa‘rnplc,bthe reference
t'abl'c_of Figure 5.38 translates as the following three simple—cxisténce facts.
" In the context of the schema, the,s‘e_ tell us that there are three iecturers

with surnames 'Halpin', 'Jones' and 'Wang'. -

3x('x has_surname 'Halpin')
3x(x has_surname 'Jones')
3x (xhas surname Wang)

Note that we do not count snnple existence facts as elemcntary facts
Althouvh we have seen that elementary facts are translated as cx1stent1a11y

sec. 0.4 {Ne galapase and detinite descriptions - 533

quantified formulae, in each case the scope of the existential quantifier must
be a conjunction of at least two conjuncts. This is true even of unary

- elementary facts, e.g. 3x(x has_sumame 'Halpin' & Tired x).

So each state of the database may be formulated as a set of facts. In
most cases these facts will all be elementary. In those rare cases where lazy
entities are allowed, we may have some simple-existence facts. These are the
only two varieties of fact that we permit in the database. Our inclusion of
simple-existence facts adds to the expfessibility of NIAM. Simple-existence
facts also simplify the treatment of certain schema wansformations, and are
easily mapped down to relational database tables. .

This completes our basic formalization of, and revisions to, NIAM
knowledge base theory. In the next chapter we use this framework to define
conceptual schema modalities (e.g. implication and equivalence) and formally
prove high level theorems conéemin‘g these modalities: These results are
later applied with a view to improving the design of relational database-

schemas.

6-1

6 Conceptual schema modalities

6.1 Satisfiability of conceptual schemas

In this chapter we define various modal properties of, and relationships
between, conceptual (sub)schemas. This first sectibn focusses on’
satisfiability, while later sections examine constraint implication and
subschema equivalence. ' |

A conceptual schema (CS) is a set of EL sentences coriforrning to the CS -
formation rules. All permitted graphical components of a CS were discussed
earlier, but we have not yet provided formation rules which define which
combinations of these components are permitted. A basic set of NJAM formation
rules for a graphical CS were spéciﬁéd by Leung (1988, sec. . 5.3.1). We
summarize and refine-these in our terminology as follows: each object type
plays a role; a pair object type cannot play a role used in its definition;
intra-predicate UCs on n-ary pfedicates must span at least n-1 roles (we
- downgrade this from a formation rule to a warning that the fact type is
compound if this rule is broken); inter-predicate UCs have a.common join
object type; subtype graphs are acyclic and no wansitively impiied links are .
shown; and subset, equality and exclusion constraints connect compatible (same
vpnmmve supertype) sequences of object types.

We have reformulated the last of these rules 1o allow cases which were
excluded in Leung’s specification (e.g. an exclusion constraint between ihe
roles of a homogeneous binary -- Leung demanded that the operand predicates
differ). We have also omitted the requirement that the CS graph he connected.
Typically, connectivity will apply. (éspeciaily if we allow implicit connection
via Real or String); however in some cases it is useful to con31der schemas
without this property (e.g. arbitrary subschemas).

Some other formation rules may be obtaincd by verbalizing those aspects -
of Leung’s metaschema (1988, p. 7-5) that are consistent with our formalism.
For cxample, each role is played by exactly one 6bjcct type, and each
predicate has at least one intra-predicate UC. Additional formation rules are
needed to cater for our extensions to NIAM, but these are straightforward and
are not documented here. However we do consider whether furthur formation .
rules should be added to prevent the user from spec1fy1n<y conceptual schemas .
 that are only mv1a11y sansﬁable

 As discussed in chapter 3, a CS spcciﬁes'a‘ structure of interest known -
as the UoD, which may be regarded extensionally as a set of possible
subworlds. Each such subworld provides a dy~4amic interpretation of the CS.
Each state of knowledge (KB state) about one of these subworlds provides a -
static vinte‘rprctatibn of the Cs. In this thesis we examine only static
interpretations. For convenience we use the ‘terms “iInterpretation”,
"equivalence" etc. without qualification to mean static interpretation, static
equivalence etc. Our formalization uses the standard notion of an
interpretation of a first order theory, restricted to KL sentences.

An interpreiarion of a CS comprises a non—crripty domain D of objccts
(individuals), together with the following assignments: each IC mé,. to one
vobjclct in D; each predicate symbol maps to a relation over D; each function’
syinbol maps to a fl'mctio_n with_argumchts and values in D; the operatdrs ~ &,
V, = and = are given their usual tmth-func'tio_nal intcrpretaﬁons; the
quantifiers V, 3 are interpreted by conjunctive and disjunctive ckpaﬁsion over
D; = is intciprctcd as the identity relation; and all other KS cohstants,
predicates, functions, operators, and abbreviations are interpreted as.
‘specified for XS earlier. | |

An interpretazion ol 2 conccptual schema CS, where CS 1s formulated as
‘a set of KL senténées, is a model of CS iff each sentence of CS is true for
I. A conceptual schema is sazibﬁablé iiff it has a model. In practice this
notion of sartisfiability is too weak, since it permits schemas with constraint
patterns that are sa.tisﬁable only because these p_attc'ms;are‘ not populated.
For examrle, consider the KB diag'ram of Figure 6.1. ‘Although the CS is well
formed according to our present formation rules, it is "silly" to assert both
.the frequcnéy and uniqueness constraint on Teaches (thcse.‘constrziihts are

labelled C1 and C2 for ease of reference).

-

2 CI
feaches
Lecturer c2
{surname _ '
\ eamns . Monéy

| Jonés | 40000 |

Figuie 6.1 Undesirable schemas may be frivially satisfiable

The KB diégram can be used to construct a model for the CS, in which
Jones is the only lecturer, earns $40000, but doesn’t teach any subjects. So
the schema is satisfiable. But asserting constraints C1 and Cz means that
anyone who teaches teaches exactly two subjects, and anyone who teaches
teaches exactly one subject. ThIS 'silly" constraint combination is mv1a11y
satisfied in our model, where nobody teaches.

The unsatisfactory nature of trivial models. in relation to constraints
has been noted in the literature. For éxample, Meyer, Weigand and Wiérar_; ga
(1988, p. 13) attempt to avoid the problem by demanding that all models be
non-empty. However, this is not a strong enough requirement. In our system,
all - models are non-empty anyway; but this does not avoid problematic cases
like that of Figure 6.1. ' '

It is clearly undesirable to have a knowledge base design which may work
- with trivial populations only to fail with comprehenswe populations. We
address this issue by proposmc a stronger notion of satlsﬁablhty In -
preparauon we first define the term "underhired". To keep this discussion -
brief we nmkf* use of familiar set theoretic terminology, and postpone a
detaﬂed treatment of relevant cardinality and constraint 1mp11cat10n results
't111 the next section.

A set of Toles Fol, is said to be underhired iff the rtoles are

n
mutuzlly exclusive,. their object types are cornpanble and their cardinality
limit (i.e. - the maximum cardmahty allowed for the umon of the role
populauons) is less than n. Basically this means we have not "hired" enongh
actors for all the roles to be played simultaneously. Figure 6.2 illustrates
the sitnation where each role is played by the same ochct type The
cardmahty of the populatlon of this object type’ sets an uppcr bound for the
‘cardmahty of the union of the n Tole populations.

The. general definition of "underhired" allows that some of the n roles
may "be‘;plziyed by different. subtypes of the same head supertype, and that the
mutual exclusion and cardinality constraints might be implied rather than

speciﬁed,explicitly.

[

Figee€2 . Him < nthen {10, } Is-underhired

6-4

As an example including both the 'simple and more complex cases,
consider the UoD specified briefly as: President has Gender {'m''{'};
President is given CompanyCar or is_assigned Taxicard, but mnot both;
MalePresident born_in Year; FemalePresident has Maiden_name; there is only
one President. Here it is impossible to simultaneously populate more than one
of the predicates is_given and is assigned, or more than one of the predicates
born_in and has_maiden name. So here we have two underhired role sets.

We now discuss some proposals for a stronger notion of schema
satisfiability. To begin with, one might argue that a CS should have a model
in which all its predicates are instantiated. However, this requirement is
too strong, since as we have just seen, legitimate schemas may violate this
~ condition by including underhired role sets. Instead, we demand that each
predicate be individually instantiable:

A conceptual schema CS is strongly satisfiable if and only if, for each
of its predicates, there is a model of CS in which that predicate is
instantiated. '

Wh1le strong satlsﬁablhty can be proved simply by creatively producing
rnodms a formal proof is requlred to show that a CS is not strongly
satisfiable. The CS is formalized in KL and existential clauses are added to
produce an arbir:ary candidate model for that case; a deduction tree is then
used 1o determine whether the case generates a contradiction; if any of r’;zse
arbitrary cases generates a contradrﬂon a model of this pe 1s not
possible and hence the CS is not strongly satisfiable. The logicia~ can
- usually use his/her intuitions to quickiy select a candidate case that closes
(and save work by translating - only the relevant part of the CS which generates
the closure). Since such proofs are generally straigh'tforward but often
‘lengthy, we do not include them in the body of this thesis. Appendix II
contains some sample proofs of various results: proof 1 is -a‘_simple. deduction
_to show that the schema of Figu:e 6.11s ‘no't‘stroﬁgly satisfiable. |

Often the designer can -easily "ses” that a consmaint patiern is not =
strongly satisﬁablé_, and has no need to check this intuition with a formal
proof. The Ci, C2 patter: in Figure 6.1 is such a case. Hovever, the
' ex'pressivenéss and constraint imcr—depe_nden‘cy aspects of NIAM lead to miany
possible confraint patterns for which it is not intuitively cbvivus whether
the pattern is strongly satisfiable. Indeed, some of rp.;' students have even
‘had trouble picking the faults with simple cases like the subschema of Figure
6.3. The subtype definition is ormitred as it is irrelevant to our dlsmssion.

6-5

'{'bvvblv }

(name)

Figure 6.3 ‘This is not strongly satisfiable on three counts -

Figure 6.3 has three faults, any of which prevents strong satisﬁabﬂity.
On predicate R, the frequency constraint clashes with. the 'uniquenese
constraint (cf. Figure 6.1), and moreover any FC greztter than 1 should be
rejected if it 5pans the whole predicate. Secondly, the rnandatory roles on A
imply an equality constraint between these roles; so if A is populated the
- exclusion constraint cannot be satisfied (implication 1is discu’sse‘d in detail
in the next section). |
A Finally, the FC of 3 on S.1 cannot be satisfied once A is populated It
it were satisfied then C would include at least 3 instances (since each tuple
in Sis unique); but 15is is impossible since C is a proper subtype of B (only
proper subtypes are allowed in NIAM), and hence C has a maximum cardinality
below 3 (because of the lexical. constralnt on B: we' formallzc such
cardinality-based reasoning in se ction 6. 2).

The argumentation in the two previous paragraphs would typically be
accepted as a "high level proof” of the faults in the subschema. In most '
cases we argue at this level. » In cases where some aspects are difficult to
‘see at the high level, or where we feel a need.to check our high level
reasoning, low level formual proofs by dedu'ctiontrees'or, similar mechanisms
are used. One aim of this thesis is 10 lay the formal {g'ro_t_md\}‘/ork_' for the
constfucrion of various interactive schema desi_gn_modules, including a proof |
editing environment to support high Jevel reasonin g about conceptual schemas.

Once & proof has been constmicted to show tha_t a constraint pattern is
not stIortcr]v satisfiable, it may be desirable to incorporate this resuli in
. the set of CS formation rules. Although this adds to the complexity of the cs
pﬁrcer, as well as lengthening the list of fOITD*thﬂ rules with Whlch the.
designer should be familiar, in most cases it is better to have such faults
detected as early as p0551b1e Moreover, by pushing such results down to the
syntax level, the later semantic work is simplified since it can assume the CS

is free of these fanlts.

With this in view, we propose that the following rules be added to the
set of graphic CS formation rules. These cover the cases discussed here, as
well as some others. We use the term "sequence’ 'and ' product to allow unit

cases: a sequence or product of one term is 1dent1ca1 to ‘that term. A
sequence of n roles is "exactly spanned” by a UC iff the UC spans it and no
- other roles. Intuitively, a role population is the set (not bag) of objects
playing that role in the given interpretation. The maximum cardinality of a
role popﬁlation equals the maximum cardinality of the population of its
attached Ob]CCt type Further bdckoround justifyinig Rule 7 is provided in the

next S€Ct101’l

Additional CS formation rules:

An FC of 1 is never used (the UC form must be used instead).
An FC cannot span a whole predicate,
No role sequence exactly spanned by a UC can have an FC.

- No UC can be spanned by a ionger UC.

(4T NSRRI

An exclusion constraint cannot be specn‘led between roles if at least one
' of these roles is marked as mandatory.

6 An exclusion constraint cannot be specified between two roles attached to
A object types one of which is specified as a ‘subtype of the other. ‘

7 An FC with upper bound n cannot be specified on a role sequence n‘ nis
less than the product of the maximum cardinalities of the other role
populations for the predicate.

" These additional rules are not exhaustive,.but we do not diséuss other
examples here. We leave it as a topic for further research to identify
forther cases of constraint 'pattem's which. are only trivially satisfiable, and
compﬂe a more comprehensive list of CS formation rules.

It should be noted that NIAM advises the designer to check each fact type |
against a sample population. If correctly carried out, this practlce helps to
minimize the occurrence of schernas which are only trivially satisfiable, since’
the first condidon for stor. satisfiability is then satisfied. However,
this practice does not eliminate the problem entirely._ It is possible, albeit -
unlikely, for the des: gner to thake a mistake by failing to see that the sample
population contradicts some of the constraints. Moreover, the second or third-
conditions for strong satisfiability might not be satisfied. Finally, it is
possible that the desi gher might make a typographical error when entering the

schema into the system.

For such reasons, it is important to make the set of CS formation rules
as comprehensive as possible, and to construct an automated CS parser to
enforce these rules. If the parser detects a syntax error, it should

highlight the violation for the designer, giving specific details, and prompt ~

the designer to edit the design. _

There are many cases in which constraints which are not explicitly
specified (e.g. by being marked on the CS diagram) are nevertheless implied.
In some cases, constraint patterns may be misleading to humans (e.g. becau se
‘the implied constraints might not be obvious, especially with implied
mandatory roles or implied uniqueness constraints). One might address this

issue by specifying additional formation rules to reject such cases.

For example, the additional CS formation rules 5 and 6 mi ght be amended . -

to include subset and equality constraints. However, we feel it is more

appropriate to have thc'automatcd_dcsign tool suggest a generally preferred,
replacement constraint pattern to the designer, but allow the designer to
decide whether to accept the replacement. Implied constraints and preferred
constraint patterns are discussed in the next section. _

In formalizing NIAM, we distinguished those features that can only be
‘considered globaﬂy, so that the theory may be applied to any subschema of
interest. Our work on satisfiability, implication and equivalence also
applies equally well to subschemas and global schemas. In a practical
application: where the global sciema is large (e.g. a few thousand fact types),
the designer typically works with only a small subschema at a time.

' _ Currently, NIAM provider little in the way of "top-do'wn". guidelines for
. modularizing a global schema into subschemas. _ Clcaﬂ};, some of the
modu:iirization strategies used‘.in o_t}fer methodologies could be adopted, if
only to provide the designer with a range of manageably sized views of parts
of the glebal schema. For example, modulés might be selected according to
theiﬁ function, and "sparse schemas" can be displayed which show object typés
without their "attributes”. For furthef discussion of conceptual schema
abstraction and modularization guidelines with specific reference to the
binafy-relationship version of NIAM, sec Vermeir (1983) and Shoval (1985).

NIAM does facilitate the "bottom-up" approach, allowing the designer to

start with any suoschema of immediate interest. However, even if each
subschema is "validated" ir is possible that the global .schema might be
fanlty, since subschemas.may impact on one another. We leave the problem of
specifying an adequate means of dealing with subschema intégration In NIAM as

a topic for further research.

OCL. L. uridu Qi HIDNCaUOil : . 6-8

Also worthy of further consideration is the notion of "finite
satisfiability” proposed by Bry and Manthey (1986). They argue that database
states should have finite models, i.e. "the constraints have to admit a finite

set of (stored as well as derivable) facts". While we feel that at t‘Hém

conceptual level this requirement is too strong (e.g. in our formalization
both Real and String are transfinite sets), in practice the restriction does
make sense for all stored facts as well as facts (stored or derived) about
“most Described ochcts _

Taking an example from Bry and Manthey, suppose the homogeneous
binary predicate works - for is imreflexive and transitive, and its first role
is mandatory. The only models for this relation require denumerably many
workers, which is unrealistic. So we ought to complement our notion of strong

satisfiability with at least an implementation wamning to ‘promote finite

satisﬁability for déscribed objects. As noted By Bry and Manthey, finite
satisfiability is semi-decidable; and semantic tableaux offer one promising

approach for automating checking of this property. -

6.2 Cdnstraint impiicéxtibn

In this section we define the notion of constraint implication with,re_;spect to

a cdnce.ptua_l schema, identify several important cases of constraint.’

implication, and provide notations for marking implied constraints on schema
diagrams. Idcally, automatcd support should be providcd so that the display
of implied constraints can be tog gled on or off by the user.

We have ‘specified how to’ translate a NIAM conccptud schema as a

conjunction of KL sentences. Let CS be any well formed NIAM conceptual
schema, and C be any well formed, static constraint on CS (but not néccssarily
- included as a cdnjunct of CS), where both CS and C are expressed in KL. Then
CS implies C iff C is true in all models of CS: we write this as €5 = C. If
in this context we treat a l\nowludcrc base state (UoD subworld chmpsc) as a

poss1blc world, then "=" may be construed as a modal 0perator for necessary"

1rnphcat1on Le.a= B =40~ B).
The detection of implied constraints is 1mportant for both conceptual and

impler“mtauon reasons. For example, the removal of an implied constraint

from a CS usually provides 2 simpler picture for the human designer, and -

St e S

=T

- improves the efficiency of the implementation by vavoidi{n.g the overhead
associated with coding and enforcing the constraint. Additionally, knowing -
that some constraints are implied by others can assist the dééigncr o
reformulate the schema into another one that is ,.cquival,e_nt-“but'.-prcfcrable.v
For such reasons, considerable research has been conducted on the general
prbblcm of detecting implied constraints. -

' Most of the research in this area has focussed on functional and multi-

valued dependencies within the context of relational. database schemas as
standardly portrayed in terms of a universe of attributes and a collccﬁon of
data dependencies (e.g. Beeri 1980; Beerl & Kifer 1986). Other kinds of

. dependency within this relational model have also been studied (e.g. Sadr
1987), but as more kinds of dependency are considered the complexity of the

problem rapidly escalates. NIAM is very rich in the range of dependencies it

incorporates, and a comprehiensive study of constraint implication within NIAM

is beyohd the scope of this thesis. Sucha study would benefit by 'including- a

" mapping of the major results of -the relational research into NIAM. The
mapping of the relational model itself ixzto_NIAI\i is fairly straightforward.

NIAM’s graphical notation helps the designer to visualize whether a
constraint is implied. To show a constraint is not implied, a counterexample
is needed (i.e. a case in which the CS is satisfied but the constraint is
not). To show a. constraint is implied, a formal proof is strictly required,
if only to confirm one’s intuitions. We now list a number of constraint
implication theorems. for NIAM: their names start with the letter "T" (for

"Implied"). The other non-digit characters in the name suggest ‘the kind of

constraint that is implied (A' = Asymmetry, E = Exhaustive subtypes, F =

- Frequency,FD =Functional Dependency, I = Irreflexive, M = Mandatory role, X -

o= eXclusion, S = Subset, U'= Uniqueness-,f # = cardinality). Examples for many

of these were discussed in NHE9. Thcir'prdofé are stfaightfdnwar_d; as a

' trivial example to demonstrate the basic technique, 151 is proved in Appendix

II (proof 2). | ‘

IS7 If an object type A plays roles fl and r,, and r, is méndatory ‘then a
'subset constraint from r, to r, is implied (see NHBS9, p. 177).

Corollary 1: If roles r, and .r, are’ mandatory for A, an equality
constraint is implied betweer them (NHBS, p. 173).

Corollary 2: If A is an object type playing role r, which is mandatory,
‘ B is a 'subtype of A, and B plays role r, then a subset

constraint from r, to r, is implied.

sec. 6.2 Constraint implication 6-10

IS2 A subset constraint from the role sequence r,..r, to the role sequence

S8, impiies subset co.nstraints from r; to.s, i = 1 to n (NH89, p.
181). ; e
Corollary: An equality constraint between the role sequences r.r,

and s,..s,, implies equality constraints between r; and s,
i=1ton. '
IX1 An exclusion constraint between role r of predicate R and role s of
prédicate S implies an exclusion constraint between any roie.sequence of
R which cdif:t'ains r and any role. sequence of S which contains s provided
the role sequences are compatible (i.e. their corresponding object types
are of the same corresponding primitive types) and r and s oc.cupy the
same position in these sequences (NH88, p. 181 gives a simple exampie). '

The couverses of 1S1-2 and IX1 do hot hold (e.g. subset constraints frorri_
each role of one role sequence to corresponding roles in another sequence do
not imply a subset constraint from the whole of the first sequence to the
whole of the second). As an aid to visualiz~+ion, IS1, the binary form of
152, and one of the binary forms of IX1 are illustrated in Figure 6.4: here
the asterisked constraints are implied. '

\ . .. A . :
C] *E Lot *: * X X*
/ . . : : N N oo

; RN P v P

Figure 6.4 - Constraints marked “*' are implied

We now consider some implied mandatory roles. IM1 involves not just
implied but equivalent representations. In its simplest form there are two
roles involved as shown in Figure 6.5. Consider the left diagram: the subset
consu*amt tells us that any object playing 7, also plays r,; the mandatory
role dlsJuncuon ensures that each object instantiating A plays r, or r;
hence each object instantiating A plays r,; so r, is mandatory, as shown on
the right diagram. ‘ ' '

M1 1 a disjunctioh of -roles rl,..,‘rn is mandatory and a subset constraint

runs from each of r,.r, to r then r is mandatory. In this case r,
should be marked-as mandatory and these subse! constraints should be

omitted (NH89 p. 251).

Vel Vo wvrrou aitit e auunr . O-tt

Figure 6.5 An example of IM1: chogsethe right-hand version

Although equivalence between (sub)schemas is not precisely defined until
the next section, it should be fairly clear that both the diagrams in Figure
6.5_cxpvres's the same information. As indicated iniMl, we suggest that the
right—hand version always be chosen: this provides a simpler conceptual
picture for the human designer. Ifdcsircd an implied MRC may.be depicted by’

"n.n

marking a white dot (i.e. an "0") on the rclcvant role arc.

~ Often, more than one constraint implication theorem can be applicd.
Consider Figure 6.6. Taking the left-hand diagram, 1S2 is used to deduce
subset constraints from r, to S and from r, to 5, then IMI is applied twice

to obtain the right-hand daaf*ram which is preferred.

' s s - . : s. |s, ko
() B0 C“\/ N
P) — A E S\? 1
-’ ‘ \’/ & Ve -

Figure 6.6 Using IS2 and iM1, the right-hand diagram is chosen

S

. IM1 argues for the same dlsplay preference in all cases. With most
equivalence ‘situations thcre is a usually prefcrred choice wh1ch may be-
rejected, for good reasons, in rare cases. Indeed, the nght—hand Version may
" itself be transformcd by ochcuficanon (sce later) or by use ‘of a
conditional derivation rule (cf. Figure 5.34). _ .
IM2 lists two cases where the preferred versien zhoﬁldalways be chosen.
This theorem is illustrated in Figure 6.7. |

IM2 If role r, is markecd optional, and role: r, is marked mandatory, and a
subset or equality constraint runs from 'rz to r, then r is mandearory.
In this case r, should be marked as mandatory, and the ‘subset or equality

constraint shquld be omitted.

sec. 6.2 Constraint implication 6-12

Fighre 6.7 IM2: choose the right-hand version

Two applications of theorems IS2 and IMZ“a_ré shown for the schema

fragments in Figure 6.8. The mandatory role constraints indicated by the

white dots are implied by the other constraints.. In such cases all the
constraints should be shown (the pairwise subset constraint is not implied by '

the two mandatory roles). Note that the "colour” of the dots matters here:
swapping black for white fails, i.e. if the top role played by A is mandatory,

and the subset constraint is as shown, it does not follow that the other tole

played by A is mandatory. Note also that similar results apply if the subset
constraint is replaced by an equality constraint.

A g 3y

1)]

-Figure 6.8 The white mandatory role dots are implied

The next three theorems indicate exclusion is stronger than asymmetry
which in turn is stronger fh:in irreflexivity. The binary case for each is
summarized in F1crure 6.9. Proofs of IA1 and II1 for ‘this.case are given in
Appendix II (Proofs 3, 4) 12 foHows dlrectly from IA1 and II1.

AT An éxblus_ion constraint between roles r, and r, implies an asymmetry
. constraint between them. o

/I An asvmmetry constraint between roles r, and rzu implies an irreflexivity
constraint Letween them (NH89, p. 189). '

/2 An exclusion constraint between roles rl' and r, implies an irreflexivity
~ constraint between them (NH8S, p. 189).

SCC. 0.£ Lonsudiri IHIPIIC&IIOI'I 6-13

as* _ as '
ir* ir

Figure 6.9 The asterisked constraints are implied . -

In formalizing NIAM we introduced set-like notations as abbreviations
without actually positing sets as objects. We now inroduce some more
abbreviations to help specify later results. The first notation is used for
discussing cases where A is a subtype of B, where B plays R.1. English

readings for the other notations are shown in parentheses.

A=BRingC =4 Vxy(xRy - Bx) & Vx[Ax=3y(xRy & Cy)]

XeAUB =qr AxV Bx { x belongs to A union B }
xeANB =4 AX&BX { x belongs to A intersect B }
ANB={} =4 ~3X(AX & Bx) { A and B are disjoint }

In section 2.1 we discussed a simple example of deducing exclusion and
éxhaustion constraints among subtypes, using the subtype. definitions and
constraints on the defining fact types. = Before specifying, the relevant
theorems. (IX2-3) to cover such examples, we state a simple lemma using

standard mathematical language.

lemma 1:iffis a function which maps set A into B, and set A, into*Bz, and

B, and B, are disjoint, then A and A, are also disjoint.

To prove this lemme, assume it is false. Then théfe must be an object, a

‘,say, in 'Al ﬂ.-Az. Sincé ace Al,f(a) € B. Sinéc ac€h, f(aj € B, So fla)

€ B, N B,. But this is impossible since B, and B, are disjoint. So the lemma
s true. This lemma is the basis for IX2:

X2 1f .-R is a functional (n:1) relation from A to B, and Al'and'A2 are
subtypes of A defined as R-ing disjoint subtypes of B, then an exclusion
constraint is implied between A and A, (and hence between any role

played by A 'and any role playéd by _A2>'

This is depicied in Figure 6.10, where the implied exclusion consmaint
is asterisked and is taken to mean: ~3x(Ax & A x). Since we specify theorems
in terms of subschemas rather than global schemas, it is not necessary that

- R.1be mandatoryi for A.

sec. 6.2 Constraint implication v ' 6-14

Figure 6.1C The populations of A and A, must be mutually exclusive

‘To apply this theorem in a particular case, we first need to show that B,
and B, (as captured by the explicit definitions for A, and A)) are disjoint.-
If B is lexical or numeric then the disjointness of B, and B, can be
- determined from our lexical and numeric axioms. If B is described, then the

disjbintness of B, and B, can bz determined by applying Lemma 1 to the
reference function which maps B into the lexical/numeric subtypes used to
-reference B and noting whether these latter subtypes are disjoint.

For example, consider the functional (n:1) fact type: Student (name)
scores Rating (nr) [1..7]. Define, two subtypes: Passer = Student scoring
Rating 2 3; Faiier = Student scoring Rating < 3 (i.e. Vx[Passer x = 3yz(x
. scores y & y has_rating or z & z 2 3)]; Vx[Failer x = 3yz(x scores y & y
has_rating nr z & z < 3)]). The numeric subtypes [3..7] and [1.2] are
disjoint. By lemma 1, the Rating sUbtypes which map via the has_rating nr
function to [3..7] and [1..2] are d*sioint So bv" IX2, the pcpulations of
Passer and Failer, which functmnally map (via Scores) to these disjoint
Raung subtypes, are mutually exclysive. '

While on the sub}ect of exclusmn constraints, we note the followmcr
theorem. This is trivially proved from TXC6 and TXC2.

- X3 A mutual exciusion constraint between n roles implies an exclusion

constraint bstween any two of these roles.

In general, sets A,,..,A, are said to exhaust Biff A, U ..U A, = B. We
.now specify the main situation where the populations of a number of subtypes
must (coHcctiVely) exhaust that of their common supertype.

IE7T I R is a relation from A to B, R.1-is a mandatory role for A, and

ALLA, are subtypes of A defined as Rlng subtypes B,...,B, which

1! b]

exhaust B, tnen Ar ,A exhaust A.

11 ¥

sec. 6.2 Constraint impiication : ‘ 6-15

This is depicted in Figure 6.11, where the circled dot means A,,...A,
exhaust A. Note that while R.1 must be mandatory, it is not necessary that R -

be functional.

Ai=AR—ingBl,i=1t0n
B,U.UB,=B

Figure 6.11 The populations of A ,..,A, must exha..zt that of A

A sketch of the proof for Theorem IE1 follows. Assume the conditions are
satisfied but A ,..,A are not exhaustive. Then there is some element of A, a
say, which does not belong to any of A,,.., A,. Since R.1 is mandatory, a
maps to at least one element, including b say, of B. Since B,,...B, exhaust
B, b beldngs to one of these, say B, But A; is by definition the set of all
“elements of A which map w B, Hence a € A, which contradicts our first
. deducfionT ‘Hence the original assumption is false and the theoiem is proved.

In applying IE1, if B is 1§xica1/numeric then exhaustion by B,,...B, is
- simply determined. If B'is described, then the 1:1 reference mapping is used
to deduce exhaustion from that of the lexical/numeric images. As a simple
example, IE1 may be used to prove that Passer and Failer, as 'dcfmed earlier,
exhéust'Student. Note that for this example, both IX2 dnd IE1 apply; so
Passer and Failer form a partition of Student.

We now consider implied cardinality constraints, and related issues
concerning cardinality. The cardinality of a set is the number of distinct
elements in-it. In Appendix II we use the nbtation "n(4)" for the
cardinality of a set A. However, in the body of the thesis we use the Z
notation for this function, ie. "#4". Syntactically, we treat # as an
operator with minimum scope, so brackets are needed if #is applied to complex
set e_:xpressions.' For example: #{5,3} = 2; #({5,3} U {57} =3.

We determine the cardinality of a lexical or numeric object type as
f_ollbws. If 0,,..,0, are all string constants or all numeric_ constants, then
#{0,5.,0,} = 1. For closed integer subranges, #[n..m] = m-n+1, e.g. #03.7]
= 5. Though rarely used, cardinalities are 'casﬂy obtained for the other

‘lexical and digiial subtype notations (sec. 4.3). For example: each of #<nd>
‘and #<dn> equals 107 if there are k lettcrs theri #i<na> = k", and #<an> =k +

sec. 6.2 Constraint implication ' ' 5-10

} + . + k% and #[xdndm] = 2 x 10** - 1. Tn principle, though not in
practice, transfinite cardinalities (Y, and N 'respectively) are assigned to.
open integer ranges (e.g. [n..]) and continuous subrancres of Real. '

For a given KB state, an-object type A is (statically) 1nte1jpreted asits -
- population (i.e. the set of objects instantiating A in that state). Though

for brevity we often speak of imposing constraints on "types", we understand

 this to mean that, for each KB state, the constraints apply to populatiens of

the types. Recall (sec 4.5) that a cardinality consiraint of O;n on A means
3%"x Ax (i.e. for any given KB state, .t_here are at most n objects in the

-population of A for that state). Similarly, #4 is the cardinality of the
population of A (i.e. the number of objects instantiating A in that KB state).
: So asserting that #4 < n is equivalent to 'imposing a cardinality constraint of
- O;n on (the population of) A.

If 'we ever wish to talk non- statlcally about an obJect type A itself

'('i.e. the set of all possible objects of that type, including all possible

states) we may denote this by "typeA”. From the KS axioms, and our agreement
that terms always refer, it follows that the object types String and Real and
their subtypes-are fully populated in all KB stateS' their extension and henee_ '
interpretation is ﬁxed For any lexical or numenc type A, #A always equals
#typeA. - o '
| However a described object type A (e.g. Lecturer) may have dlfferent
extensions in different KB states: the populatron of A may vary from state to
state, and hence so may #A. In rare cases, cardmallty constraints might be
explicitly specified for A. Typ1c_a11y however, upper bounds for #4 have to be
deduced. There are many ways in which such implied cardinality constraints
may be deduced. The most general method'maps the population of the described
object type into asequence of lexical or numeric types. via its injective
primary reference scheme and then uses the product of the known cardinalities

- of these types as an upper bound. We now specify this method in more detail.

Each described object type has an injective (1:1 into) primary reference
scheme in which it plays n roles, where n 2 1, and each nested object type
formed from an n-ary predicate is referenced viaa 1:1 function whose argument _‘

'__types are the object types playing the roles of the defining predicate. So

any described object type A has an nfpar't'primary reference scheme_ providing a -

- direct injective map to a sequence of object types T,,...T,, say, where the T;

are not necessarily distinct. If any of these T; is described, map it '
likewise; continue until A is mapped into a sequence of string/numeric types.

. Any population of A must inject to the set of tuples of this type sequence.

sec. 6.2 Constraint implication ' _ ' 6-17

We deﬁne a head type to be any object type which is not spec1ﬁed asa

subtype 'If A is a described head type then, in the absence of stronger

constraints on its cardmallty, any tuple from the type sequence T T

- might be used in referencing a member of A. So, if A is a described head
type, the cardmahty of the set of all such tuples determines dmax#(A) the
default maxzmum cardmalzty for the population of A. The above reasoning is
' summarized by the following pseudocode spec1ﬁcat10n for the recursive

functlon dmax#, and by theorem ISll

Function dmax# (A: described_nead_;type): Posint;
{ return default maximum cardinality for population of A }

var cardrnality: Posint; { evolves into the reduired cardina‘iity }

function image(A: described_object_type): object_type sequence; ‘

{ return the sequence of Iexical and/or numeric object types
to which A ultimately injectively maps }

begin

. replace A by the sequence of object types Tl, ,T
to which it dlrectly rnjects via its n-part primary reference scheme; o
for each T; :

it T;is descrrbed then T;: ima_ge(T s
’ return
end;

Begin
: -ca_rdinality =1
for each object type T in image(A) _
cardinality := cardinality * #T; . { T is lexical/numeric }
_return cardinality .
End. '

I#1 - If A is a described head type, #A < dmax#(A)

For example, from Gender (code) {*m’,’"}, Mass (kg) [50..150] and Room

(floor#, cell#) <d,d2> we deduce dniax#(Gender) = 2, dmax#(Mass) = 101 and -

dmax#(Room) = 1000. Hence #Gender = 2, #Mass < 101 and #Room s 1000 If
~a stronger cardinality constraint is- spe01ﬁed this ovemdes the ‘default.
| For example, if 0;500 is specified for Room, then #Room < 500.

' For each KB state, #4 < #typeA. If A is described, the CS does nct
. include an explicit equation to fix the value of #typeA. However, if A is a
described head type, we may equate #typeA with dmax#(A) if we assume thatno

| object in A can change its (state-unqualified) primary- identifier. This |

aSsumption is usually justified, but in rare cases there ‘may be eXCeptions.

sec. 6.2 Constraint implication : . 518

For example, suppose lecturers are identified by their name, and a woman
lecturer changes her surname when she marries; or one lecturer leaves and
another with the sume name arrives. In practice, these cases can be avoided
by choosing a state-independent primary reference scheme (e.g. employee#).
Even if the prirri-aryfrefcrchC scheme for A is state-dependent (i.c.
identifiers must be qualified by the state), dmax#(A) is still an upper bound

for #4; and this is the main issue.

In those rare cascs where the environment dictates a change in the
primary referer "s scheme itself (e.g. metrication of the unit system, or
amalgamation of two éysterris with common object types but different reference
schemes) special arrangements are needed (e.g. conversion rules). This is one
aspect of the general problem of catering for cases where the CS itself
evolves. Though this problem is an ifnpofcant one in practice, we do not
explore this point further. ‘

The next theorem (1#2) is specified diagrammatically. The cardinality of
a role is the number of objects playing that role. In the case shown, R has
arity m+1 and is piayed by object types A and B,,..Bu. The asterisked role
cardinality. constraint is clearly implied, since the number of possible
permutations of B,..,B, is the product of their cardinalities, and the
uniqueness constraint across all but A’s role implies that each permutation is

associated via R with at most one member of A.

1#2 o;n, . O;n
. \\ \\ ~\\
Bl//l . A S Bm,’
_ _—
R i *#R.isnlx xn_

As a corollary, if R is mandatory -for this situatioh, then the
cardinality of A must be at most the product shown, since all members of A’s .
population play R.i. This result is specified graphically as 1#2’.

2 0;n, ..

R i *HEASN x . xn
. 1 m

sec. 6.2 Constraint implication 6-19

If instead of a UC on the permutations of B,,...B, we have a frequency
constraint upper bound u, then each permutation may be associated with

objects from A. Hence:

#3 If the UC in [#3/I1#3' is replaced by an FC with upper bound v, then the

product n, x .. x n_ should be replaced by u x n, x .. x n_.

Let us use the term "max#"A for the maximum pérmirred cardinality of the
population of A, for any object type A. If A is lexical or numeric then max#A4
equals #4 which equals #typeA. If A is a described head type then max#A4
equals dmax#(4) by default; if the cardinality constraint O;n is asserted on’
- A, and n < dmax#(A) then max#4 = n. '

Since NIAM permits only proper subtypes, if A 1s a subtype of B then
#typeA < #typeB, and #4 < #B. Although for a given state it is posmble
that #A equals #B, the maximum permitted cardinality of A’s population is less
than that for B. This general result (I#4) is independent of the spemﬁc

dpﬁm tion for A, and was used earlier in discussing Figure 6.3.
I#4 [IfAlsa subtype of B then max#A < max#B.

If A is a described subtype, the definition of A, combined with
constraints on the predicates participating in this definition, can often be
used to deduce an upper bound for #A that is smaller than max#5-1 where B is
its smallest supertype. We now state the main results in this regard. These
are intuitively obvious, and their formal proofs are straightforward.
I#5 I the n-ary predicate R is played by object types B,.,B, (not
necessarily distinct), a uniqueness constraint of length n-1 exactly

17"!

spans all but the ith role, and A is defined as the subtype of B; which

plays 'R with specified - subtypes Bl, ,B‘_l’,B‘ l’, B’ of the other

types, then #A < #B ' x .. x #B; ' x #B; 'x . x #B .

145 is obvious since the UC provides a function from the specified
population sequence to the population of A. If instead of a UC we have an FC
with upper bound u then each member of the populaﬁon sequence may be

associated with u objects in B;. Hence:

1#6 If the UC in I#5 is replaced by a fre_duency constraint with upper bound
u, then #A s u x #Bl’ X ..% #Bi_l’ x #B‘-ﬂ’ X . X #Bn’.

sec. 6.2 Constraint implication o : 6-20

As a simple example of I#5 and #2, consider Figure 6.12. Here the same
official ‘may be president, secretary and treasurer, but each of these
vpositio'ns is held by only one official. So there is .at_most _one president,
and at-most two officials fill the other positions. These upper bounds on
#Prési_dcht' and #Sec_or_Treas are shown as implied cardinality constraints,
‘using asterisks. The implied constraint on #Holds.1 follows from I#2.

Official
(name)

*0;1 '
President

x| President x = Jy(x holds y & y has_positioncode 'P')] v
VX[Sec_or_Treas x = Jy(x holds y & y has_positioncode 'S’
' V y has_positioncode 'T')]

Position\ {'P','S', 'T}

‘holds

0,2

Sec_or_Treas * #Holds.1 < 3

Figure 6.12 The asterisked cardinality congtraints are impliéd

As _ai_'simpl-.*.- example of I#6, suppose the UC on Holds is replaced with an
FC of 1;2. This allows at most two presi'dents, at most two secretaries, and . B
~at rflost tWO- treasurers. Cleaﬂv, the implied cardinality constraints on the
populatlon of President and Sec- TICdS are 0;2 and 0;4 respectively.

In sections 4.5 and 5.1, we dlSCUSS\,d role- Ob_]CCt constramts to specuy
cases where a UC or FC applies to only some of the objects .playmcr a role
(TROC 2-3). These constraints can be used to set an upper bound for #4'in the
absence of a UC or FC on the other n-1 roles. I#7 sets out the simple case.

1#7 If a subtype A consists of those objects playing one role of a binary
predicate' R -with an object which has a_ role-object UC, or FC of upper
bound m, with respect to the otmer role of R, then #A < 1 or #A =
respectwely

Before illustrating I#7, we consider one more result. In general, if A

‘and B are sets then the cardinality of their union is the sum of their

cardinalities minus the cardinality of their intersection, i.e. #(A U B) = #A

#B - #(A N B). In naming subtypes based on unions/intersections we often

include "or"/"and" (e.g. "Sec_.or_Treas"). The wording of the 'following

theorem reﬂects thlS plactlce (of course it does not matter what the subtypes
are called) '

e e e e ' £22)

I#8 If AorB and AandB are équated with A U B and A N B respectivély, then
#AOIB = #A + #B - #AandB.

As an example of 1#7-8, suppose that the Holds predicate-of Figure-6.12 . -
is mn (le. the UC exactly spans both roles), but that role-object
constraints are applied to position codes (and hence to positions) as follows:

Now .Wé have at most one president, at most one treasurer and at most two
secretaries. From I#7 the cardinality constraint 0;1 is implied for the
subtype President; and if subtypes for Secretary and Treasurer were introduced
they would have implied cardinality constraints of 0;2 and 0;1 respectively.
' For this UoD the same official mightAbe both a secretary ar;d the treasurer;
when Secretary and Treasurer are fully populated it is possible that their
~ intersection is empty. If we add a UC on the first role of Holds, we know
this intersection is empty. In -either case, #8 yields a cardinality
constraint of 0;3 on»Sec_or_Treas. If a textual consfraint is added to assert
that anyone who is treasurer must. also be a secretary then I#8 yields a
cardinality constraint_ of 0;2 on Sec_or_Treas. |

_ E Supposé howsver that the role-object constraints are as just stated but
an FC of 2 appliés to the first role of Holds, and this role is now mandatory
(it could have been 'opribnal before since Figure 6.12 is a subschema). In
this UoD an official holds either no position or two positions. The role-
dbject constraints now imply that the only way of filling all positions is to -
have exactly two officials: one is the President and a Secretary; the other is
Treasurer and. a Secretary. But this impli_es that Sec_or Treas équals

~ Official, which violates the metarule that only proper subtypes are allowed A

(cf. 1#4). Hence this subschema would not be strongly satisfiable.

As the previous example demonstrates, the full implications of a
parﬁcular constraint pattern may not be irnmédiately obvious. This can also
be the case with implied uniqueness constraints. Consider Figure 6.13. Here
we ‘have two bins-ies connected by a binary subset constraint (each ordered
pair in R ‘must also be in S). A uniqueness constraint on one of the target
roles irnpliés a UC on the corresponding source role. As an alternarive to
marking the'irnplied UC with an asterisk (which might perhaps be mistzken 10
‘mean the fact type itself is implied) we use a broken uniquen'ess bar: its

-arrow tips may be omitted if the roles are contiguous.

SCC. O£ LonisuvaiiL-aripneauor O-ZL

U1 I a binary - subset constraint runs from the binary predicate R to the

binary predicate S, then a UC on S.iimpliesa UC on R, i= 110 2.
S S
T t
R R

Figure 6.13 The UCs shown as broken bars are implied

A sketch of the proof for the left hand part of IU1 follows. Assume the
implied UC does not hold. Then there is a state in which Ra b, and Rab,, for
some a,, b, b,. The subset constraint implies that in this state Sab, and
Salbz, which contradicts the UC on S.I. So the assumption is false, i.e.
~ there is a UC on R.1. Similarly, the right hand part of the theorem is
proved. - ,
Note that for the subset constraint pattern of Figure 6.13, a UC on a
. source role does not imply a UC on its target role. Non-implication may be
shown by citing a counterexample. One countcrcx.ample here is: Rab;; Sab;;
Sab,; Sazbrl. In this state, the ‘subset constraint is satisfied as well as
UCs on each of the source roles, but neither target role has a UC.

| Note also that with unary subsei constraints, a UC on one role (source or
target) does not imply a UC on the role at the other end of the subset
constraint. For example, in the following state, subset constraints run from
R.1to0 8.1 and R.2 to S.2 and UCs apply to S.1 and S.2, but UCs do not apply :
toR.1orR.2: Rab;Rab,;Rab; Sab; Sapb,.

In most modelling approaches, the most 1mportant kmd of constraint is
- the functional dependency (FD). Within our framework we may speak about an
FD from one tole(sequence) to another role. The simple case of an intra-
predicate FD from one role 1o another may be specified as shown in Figure |
6.14, using a solid smrow to show. the direction of the FD. This means each
object instantiating R.i is associated via R with only one object in Rj. If
_ 'Al- and A; play R.iand R.j respectively, we may express the FD shown by saying
that A; functionally determines A; in R.

SGU. 0.2 LOIISUENn Implcanon _ ' : 6-23

[CTTTT]

VX R & = X &5 =y VHRK B = X2 %=)]

-Figure 6.14 ~ An FD from role j to role j

The following theorem is obvious, since a role(sequence) governed by aUC

. can only be instantiated once.

" IFD1 A UC on a role(sequence) in a predicate"R implies FDs from this
role(sequence) to each other role in R. ' '

AR

The converse of this theorem also holdé' ([U2). The .prbof is trivial: if

the FDs exists, each instantiation of the source role(sequence) is associated
with a single object for each of the other roles; if the source is duplicated
then the same target objects obtain, which contradicts the default UC across
-the whole predicate. ' ‘

U2 Given any predicate R, if FDs-stem from & role(_sequénce) in R to each
otherrole in R then a UC spans this role(sequence).

To help ensure that all fact types are elementary, NIAM demands that no
fact type has a UC which fails to span two of its roles (see NHS9, sec. 5.2).
AUCona single role provides a simple key, and a UC spanning_mqrc than one
role providcs' a composite key. Clearly, only binary fact types can have a,
simple key. - l | o
In NIAM, so long as the fact types actually are elementary, there is no
need to introduce a special notation for functional dependencies within a
fact type, since if a fact type is elementary all its FDs are captured by its
UCs. If we find the need to assert an FD on a fact type. which is not caprured
- by a UC then we know the fact type is not elementary, and we should split it
on the source of the FD. Background on such "splitting" is given in section
5.2 of NH89. ‘ |
 Suppose we have a situation like that of Figure 6.13 except that R is
longer than a binary. By a proof similar to that for IU1 it may be shown that
an FD is implied as shown by an asterisked solid arrow in Figure 6.15. But

sec. 6.2 Constraint implication 6-24

this entails that R is not elementary. R should thus be split on the object
type playing the source role for the FD. The result is specified as theorem
IFD2.

~—A :splitR o : split R

Figure 6.*5 Because of the implied FD, R should be split

AFD2 If R is at least a ternary, and a binary subset constraint runs from
R.1,2 to the binary predicate S, then a UC on S.1 (or S.2) implies an "
FD from R.1 to R.2 (or from R.2 to R.'1). In this case R should be
split on the object type playing R.1 (or R.2). |

Clearly, IFD2 may be generalized so that the source roles for the subset
constraint may occur in any position of the predicate R. We discuss an
important application of IFD2 in the next chapter (a Lecturer-Subject-Student
sch:ﬁna reqﬁirin g Boyce-Codd Normal Forfn). This application also illustrates

the next theorem.

JU3 If role i of predicate R is functionally dependent -on some other role
of R then a UC across all but the ith role is implied.

For eiamp]c, consider Figure 6.16. If the ifnplied UC did not hold then it
‘would be possible to have a state where Rab.c, and Ra,b,c,, which contradicts
the FD from R.1 to R2: - | o

R

Figure 6.16 The UC is implied by the FD, and R Is splittable.

- I the predicate R in 1U3 is binary, the theorem is equivalént to TFD1.
If R has a higher arity then R is splittable on the source of the FD. This
“theorem can be useful in examining questionable fact types, as well as

‘composite fact types in-output reports.

sec. 6.2 Constraint implication : ' 6-25

' We now briefly consider implied frequency constraints. The most useful

theorem in this category is as follows. Its proof is trivial.

IF1 I roles i and j of R are played by A and B, a UC exactly spans these
"roles, and #B < n, then role i has an implied FC of 1;n.

\‘ \\
A /l B ,IO,n
R I: . j]
— - ——
*i{:n

Other examples of implied frequency constraints are discussed in NH89

(pp. 152-3). Because of the large variety of constraint categories in NIAM,

the constraint implication theorems we have considered in this scction'arc not

exhaustive. However, the theorems we have considered do have substantial

- practical application. We recommend rhé: dcvcldpmcnt of further theorems of
* this nature as a worthwhile research activity.

Before closing this section we mention two more theorems (IS3 and IU4)

that are relevant to specific schema optimization examples discussed in the

next chapter.

IS3 The subset constraint in the foliowing figure is implied by the other

constraints.

A
el

n
The proof of 153 is simple. Because of the UC, the frequency constraint
and the‘cardinality constraint, any object a playing R.1 plays with all
objects in thc type B. Since R.1 is mandatory, all (a,b) pairs in the
database must occur in R.1-2. Hence any pair in S.1-2 must occur in R.1-2.

S

We make use of this theorem in the Zoo exampie of section 7.2.
The last theorem (IU4) is fairly specific. We cite it here to shorten -
discussion of a BCNF example in section 7.2.

e e b s eSS V-cO

U4 The astéris'ked UC in the following diagram is implied by the other .
constraints. ' '

o |

T R
T | C
, -/

The proof of TU4 is by reductio ad absurdum. Assume the asterisked
constraint does not hold. Then without loss of generality, there are 2 tuples
(al,bl,cl) and (a2,bl,cl) ¢ R*S. Hence {(al,bl),(aZ,bl)}' € R and
{(al,cl_),(a_’l,cl)} cT. Bcéause‘ of the equality constraint, {al,a2} < S.L
Because of the subset constraint, and the UC on R, al and a2 must be paired
with bl in S (pajﬁng"wilh anything else, say b2, would imply alRb2 which
violates the UC on R). But this violates the inter-predicate UC between S and
T. Hence the inter-predicate constraint between R and T must hold.

T e st Tt RET PRIt . e

6.3 Equivalence of conceptual schemas

In this major section we discuss equivalence between conceptual (sub)schemas.
Although limited to -static interpretations, this notion caters for the
possibility that the schemas may differ in their predicates.. Our
formalization is used to establish several important equivalence theorems.
These theorems are applied in the next chapter to perform conceptual
optimization. Further backgrdund on schema equivalence in NIAM is given in
“chapter 10 of NH89. '

Considerable research has been conducted on the general problem of
| determining whether two schemas are equivalent. However the bulk of this
research has focussed on the equivalence of relaticnal schernas (e.g. see
Kobayashi 1986). Some work has also been done 6n equivalence between
conceptual schemas based onVER-modelling (e.g. D’Atri & Sacca 1984). Within
NIAM, four basic equivalence results have been stated (e.g. Falkenberg 1986,
pp. 7-14/20) but, apart from our own work, we are not aware Of any formal |
treatment of these results. Our formalization enables NIAM equivalence
theorems to be precisely specified and rigorously proved. We also introduce
some new equivalence theorems. Appendix Il briefly considers how our results
may be used within the ER framework.

Let T, and T, be conjunctions of KL sentences, and let "model" abbreviate

statlc KS model". Then T, implies T, iff each model of T, is also a model of
T,ie. T, =T, =df' D(Tll - T). T, and T2 are’ equivalent iff they have '

»
exactly the same models, ie. T, © T, =, O(T, = T,). Recall that XS is a
first order theory. T, and T, are cqu1valcnt if each may be proved from the
otherin XS. So' equlvalent is short for "KS-equivalent”.

Let CS1 and CS2 be two conceptual schemas (either subschemas or global
- schemas), each of which is expressed as aconJunctlon of KL sentences. Let K
be the conj sunction of the axioms of xs. Let S1 and S2 be the specific axioms
of CS1and CS2 rcspecnvcly, expressed as a conjunction of KL sentences. So
CS1isK & S1,and CS2isK & S2. LetR1 and R2 be the sets of pi'edicate and
function symbbls of CS1 and CS2 respectively, that are not used in K.

Since the KS axioms are included in all sc‘hemas,‘ the languages of CS1 and
CS2 can differ only in their predicate and function symbols. If R1 equals
R2, then equivalence between CS! and CS2 is defined as previously (by default,
symbols common to both are given the same interpretation).

If R1 differs from R2, ‘or some symbol common to R1 and R2 is to
be interpreted differently in the two schemas (such schemas cannot be included
in the same global séhema), then implication and equivalencé between CSl and

et e A e B R L o L R Lo PV F g L] 6'25

CS2 can only be specified within the context ‘of tules which translate the
predicate and function symbols of each purely in terms of the symbols of the
other. If such rules are supplied, then it is useful to know whether the
schemas are equivalent in the context of these rules. T
- LetDlbea céﬁjUnction of KL sentences definin g the symbols of R1 purely
in terms of the symbols of CS2. Sifnilarly let D2 define R2 purely in terms of
- the symbols of CS1. Then CS1 is contextually equivalent (under D1/D2) to CS2
if and only if CS1'& D1 < CS2 & D2. .
We set out definitions of predicate/function symbols as universally
- quantified biconditionals/identities. The definiens is always shown as the
left operand. Definitions for symbols éommon to R1 and R2 may be omitted,
with the tacit understanding that they have common interpretations.
" The theories CS1 & D1 and CS2 & D2 provide a conservative extension to
the theories CS1 and CS2 respectively. The extension is conservative since no
new primitives are introduced. For formal backg'rouh’d. on conservative
extensions and isomorphic embeddings see Keisler (6d.jBarwise 1977, p. 56),
Chang & Keisler (1977, Ch. 3) and Hanter (1971, pp. 201-5).
Conceptual equivalence between (sub)schemas licences the interchange of
.the'ir definitionally extended forms, usually for conceptual' simplicity or
later impiementation efficiency. In practice, this usually takes place within
a lzirge global schemu. It is possible that some predicate or function symbols
in the replacing subschemaz occur in the global schema but not in the repiaded,
subschema (except in the contextual deﬁnitions). - In this case the
interpretation given to these symbols in the contextuz] definitions must agrée
with their intezpi'etation in the global schema. If the syr'nbols“r;ave different
readings in the two cont_éxts then renaming to avoid this arnbigﬁity 18 required
before the replacement. - | ' _
Before specifying general purpose equivalence theorems we clarify, by 4
means of examples, some finer points concerning object type introduction. To.

~ begin with, consider the subschemas in Figure 6.17.

cs2:

has_gendercode {'m','f'}

Person pe—- ey 3

Figure 6.17 lIs there a context in which CS1 and CS2 are equivalent?

VL. VW LYWIVaUGHILT UL Lunivopiual dULHISHIaD o-£Y

3

- Here the predicates Male and Female occur in CS1 but not CS2, and the
- predicate Has_gendercode appears in CS2 burnot CS1. The reference mode for
Person has been omittzd since it is not relevant to our discussion. Leaving
aside some finer poirts, CS1 roughly says that nobody can be both male and
_female, and CS2 roughly says that.a person can have on]y one gendercode and
this must be "m" or "f". Using our intuitive _undcrstanding of the connection
between thesw predicates, we might feel that CS: and CS2 are eqdivalent since
they appear to "say the same thing" in di‘ffcr:nt ways.
 While useful, this kind of "gut feeling" approach towards cquivalcncé
"suffe'rs from two major drawbacks. Firstiy, our gut feelings are not always
reliable: we might miss some subtle as'pect that is captured in one
representation but not the other.” Secondly, if we wish to have'comp_‘ute
support for determining equivalence, we need to formally captare our intuitive
connections between the predicetes. " As.Brachman (1988, p.]O) bdyS
"Intuitions about the meanings of English words, which are available to us and
allow us to make inferences without conscious effort, are not magically
present in the machine”. So we need to specify definitions to translate
between the predicates used in the different _sc'hemas.
An appropriate specification is set out in Figure 6.18. For convenience,
edch predicate has been abbreviated to its first letter. |

D1: Vxy(xHy = Mx & y='m' . Fx &y="f") D2: Vx(Mx = xH'm")
' R CL : Vx(Fy = xH'f")

- Figure 6.128 CS1 & D1 & CS2 & D2

Hu :an intuition 1S required to provide candidate formulae for D1 and D2;
however, once stated, they can be fofmally'tested. The formulae in 2 define
Male anG Femuie in terms of the language of CS1 ('m' and '{" are i~dividual
constants in both schemas since each schema embeds K). The D2 formulae are
easity produced. The definition D1, though'obvious in hindsight, is harder to
create. _ '

From 'Qur experience, we suggest the following riethod for developing
formulae for D1 and D2 for other cases. Use your intuitions-tom‘ake“an

£-20

educated guess for D1 and D2. Test this by means of a deduction tree for CS1
& D1« CS2&D2. Ifa permanently open branch indrcates failure, use the
counterexample generated from this branch to produce new candidates for D1
and D2 which avoid this counterexample. Continue-this—refinement-by-"
counterexample process until the formulae chosen are proved comrect. We
regard counterexample generatiorl to be one of the main benefits of approaches
‘which incorporate semantic tableaux.

A formal proof for the assertion in Figure 6.18 that CS1 and CS2 are
contextually equivalent under D1/D2 is given in Appendix I (proof 5). To
perform the proof, the subschemas must first be translated into KL using the

rules provided in earlier chapters. This gives:

CS1: Wx{Px - Described x) | CS82: VWx(Px - Described x)

VX(Mx - Px) L yxHy o Px & (y="m W y="1)]
WX(FX P Wxyz(xHy & xHz -~ y=2)

Wx~(Mx & Fx) o ' :

K - K

Since K is included, we know that 'm' # 'f' (from A‘theorem CC+). Thisis
needed. The deduction free proof shown in the Appendix is now
st_raigh'tfom'ard, butvlengthy (three pages of formulae). Such proofs can be
facilitated by automaied support. Substantial research has been carried out
to de\ ¢1op aatomated theorem provers (e.g g see Bl‘dsoe & Loveland eds 1984)
and rmeracuve proof editors (Robinson & Staples 1988), mcludrnU automated _
: support for semantic tableaux (e.g. see Reeves, 1987). . Lindsay (1988)
provides a survey of computer support for formal reasoning. ~Our own
experience with proof seneration indicates that the ‘development of a proof
editor specifically designed- to a551st reasoning about NIAM conceptual schemas
would be of considerable research value. Thouch not discussed in this the51s
we have begun design and coding efforts in this regard.

Because the definitional rules are bi-directional, both defined and
defining predicates can, in principle, be used for both update and query.

BehaViourally CS1 & D1 and CS2 & D2 will generate the same responses for
| any update/query In typlcal practice however, once a choice has been
made, only the defining predrcate is used for update. To indicate this, the
definition may be asterisked, since it then has the 1rnp1ernemat10n status of a
derivation rule.

Once a'subscherna has been replaced by another to which it is contextually
equivalent, the d-esign_er will often decide" that contexmally defined

predicates unique to the replaced subschema are no longer of interest. In
this case, a deliberate decision may be made to drop the defined predicates
from the schema. For example, after transforming from the unary to the
binary version in Figure'6.18, the designer might decide to drop the miles in
D2. This loss of context means that equivalence is also lost.” For example,
assuming people are referenécd by surname, the fbllowing conceptual sentence
may be used in an update or query for CS1, but not for CS2 without D2: 3x(x
‘ha§_sumame 'Halpin' & Male x).

- So long as the designer is aware of the context in the first place (as
specified in our equivalence theorems), he or she will be aware of premsely
what information is being discarded, and hence can maintain-conscious and
precise control over the semantic impact of schema transformations.

In some cases, co_ntextually equivalent subschemas may both be present
within the same global schema. In this case, if D1 (or D2),.ié a theorem of
the global schema, then S2 (or S1) may be deleted, provided its impact (if
any) on the global schema is catered for. The need to cater for global impact
when making local changes also arises whcn one subschema is replaced by
another, since the original - subschema may share - constraints with its.
envuonrneat (e.g. inter-predicate constraints and nesting). Let’s consider a
s1mple example. '

. A science fiction novel by .Asimov (]986) describes a planet Solaria,
whose people are hermaphrodites. QLppos,e our UoD includes both humans and
Solarians,.and we use. the terms "male", "female" and "hermaphrodite” in a

mutually exclusive sense. We might portray this situation by Figure 6.19.

Male |.

—————Femalé’"f"":{@

. Herméphrodite

Figure 6.19 A UoD with both humans and Sqlarians

Since an exclusion constraint'is'implied between Male and Female, the
equivalence theorem of Figure 6.1 may be applied to the subschema containing
- just the top two fact types. However, to preserve the stronger exclusion
constraint of Figure 6._19.,' an exclusion constraint must now be added between
the Hermaphrodite predicate and the first role of Has_gendercode. _

CULL. ULV LYUIVAIGHILE Ul LULILTILUAL SUHICHTIAS ') o-JZ

Of course, a better transformation would be to replace the three unaries
with a single binary (Has_sexcode) using {'m','f','h'} (see right half of
Figure 6.20). Note that this binary has a simple key: this desirable feature
derives from our decision to make the three sexes mutually exclusive, rather
than defining a hermaphrodite to be both male and female, whick would lead' to
a composite key (see left half of Figure 6.20). . The contextual equivalence
between the two versions is as shown. The predicates Has_gendercode and
Has_sexcode are abbreviated s "G" and "H". Transforming composite keys
_into simple keys is useful for reducing the number of tables requlred in
’ relaUOnal databases. '

The notation "*CWA" below CS1 means . the relevant closed world
aésumpuon 1s required for CS1 (a hermaphrodite cannot have just one sexcode
recorded). “For some recent discussion of the closed world assumpfion and
incompletehess in the relational model see Motro (1986) and Gottlob & Zicarl
(1988).

cst: O m S csa O 'm R

— - \ — -~
Ol =D O
_ ‘v ‘e
D1:. . - D2 o
Vxy[xSy = ly(xGy & (y='m" V y=")) . Vxy[xQy =y= 'm' & (xS m' V x8' h)
V xG'm' &xG'f' &y='h"] S Vy=¥ & xS’ 'V x8'n)]

*CWA

_Figure 6.20 - The right-hand version is usually préfe_rred

If a lexical or numeric subtype is given a speeiﬁc name in just one of

the schemas then this information mus: be included in the contextual .
definitions below the other schema. For -exarnple, suppose {'m','f'} in Figure
. 6.18 is giv'eri the name "G" (ﬁbbre_viating "Gendercode"). The equivalence
CS81 & D1+ CS2 & D2 holds so lon g aswe rephrase S2 and D1 to include this

- new feaiuare, i.e.

S1: Wx(Px - Descrived X) c S2: Wx(Px = Described x)

Yx(Mx = Px) - o ‘ Wxy(xHy = Px & Gy)
VX(FX = Px). ' . : Yx(Gx =x="m' V x="f")
© Yx~(Mx & Fx) : _ | Vxyz(xHy & xHz + y=z)
Di: ¥x(Gx=x='m'V x="" D2 Wx(Mx=xH'mM")*
Vxy(xHy = Mx & y='m' VX &y="f) , \—/x(Fx = xH'f’)_

The types Smrl.. and Real are deﬁned in all schemas. But the choice of
_Descnbed obj J:M types is up to the designer. Ezch CS partitions the d domain

£-3% -

of described objects into a set of primitive object types. So long as the
domain D is the same, it is possible for schemas to spccify'differc'nt
partitions but still be equivalent. Figure 6.21 illustrates two partitions,
one demarcated by single liric_:sv and the other by double lines:~ o

Figure 6.21 wa different pértitions of the same domain

If two schemas. differ in their described object types, then any claim
- of contexmal equivalence must include definitions which enable these
type predicates to be translated from one schema to the other. If the
domains are not the same, this simply cannot be done. For exarnple consider
the schemas shown in Figure 6.22. Both schemas have the Ob_]CCt type Person -
but only CS2 has the Ob_]CCt type Gender. '

]
Male - . CSs2: :
] has_gender {'m",'f'}

.X..
o T

Femlale

Figure 6.22 Schema CS52 has an extra described object type

Since the described object typés differ it is necessary to consider their

- formalization. The solid ellipses translate via TSE to Vx(Person x =
Described x) and vx(Gender x + Described x). The global partition axioms P3
and P4 also make assertions about these types (sec. 5.2). Further, CS1 alone
cannot accept some assertions that are acceptable for CS2, e.g. that there is
a gender with code 'f'. Without access to global described object types which
- might make possible a translation of Gender, there is no way that CS2 can be

converted into CS1. ‘
In the absence of such- global 1nf01mat10n the only way that a contextual .‘
equlva.lencc for such cases can be spcc1ﬁed is to include all locally
. primitive, described object types and their reference schemes in both schemas.
~ This is done in Figure 6. 23 Here "H", "Ghe! "C" abbreviate "has gcnder

"Gender", "code", and "has gendercode".

Sec. 6.3 kquivalence of conceptual schiemas . o) 6-34

Cst:- M cs2: : {'m','f'}

| : : — (c)
@
v'm','f'} _

Di: Vxy(xHy = Mx & yC'm' V Fx & yC’f') D2: Vx[Mx = Ey(xHy'& yC'm"]
‘ ' ‘ : Vx[Fx = y(xHy & yC'f')]

Figure .23 Notice that G(c) {'m','f'} appears on both sides

Notice the need to specify the definitions using the reference schemes.
To our knowledge, all previous treatments of this kind.of ‘equivalence have
used individual constants to directly name ‘the described ObJCClS (e.g: see
 NHS9 p. 219). We now argue that thls is a rmsta.Le since this practice
implies that the objects so named exist in all states of the knowledcre base
(since ICs must refer). Apart from other problems, this would make nonsense
of the treatment of mandatory roles; for example suppose we replaced ' 'Gender
" (code) {'m','{'}" in the diagram by "Gender {m,f}", and made the second role
of Has_gender mandatory. This entaﬂs that in each state of the knowledge
base we must know the gender of at least one male and at least one female
person this is unucceptable Notlce that no such proolem arises for lexical
and numeric objects. , .

’ Al_though equivalence transformations must preserve described object
types, in practice the designer méy be satisfied with less than equivalence
and decide to delete the old types. For example, suppose the bmary in FIUUI'C
" 6.231s replaced by the unaries and the Gender node. If Gender does not occur

- elsewhere in the global schema, and there is no need to support its form of

expression, the designer may simply drop the Gender node as well as the
deﬁni’ti-on Dl. Again, we have controlled inforrhation 1oss. _

* Informal Versions of the equivalences we have been discussing are called
object-role reduction/cornpositio'n by‘Falken_berg'(1986). In NHE9 we called
them ‘;entity type - fact type conversions", where the most important theorems
were labelled "T2" and "T3 " (NHS9 pp. 222-3). We are now in a position to
~ specify these theorems rigorously.

- In thlS thesis all equivalence theorems have labels start1n<I w1th "E".
In each case CS1 & D1 & CS2 & D2 is understogd as being asserted, where the
left/rwht side is side 1/2. Because of space limitations, we do not provide
further proofs. However, these may be proved by deduction trees in a similar
mannes e proof I in Appendix IL - The unary-bin m,ry conversion for the

sec. 6.3 Equivalence of conceptual schemas : o 835

lexical/numeric case is set out in EUB1. Recall that when an object type must
be either lexical or numeric it is shown as a half-solid circle with the type
name underlined. Here we have n unary predicates, where # is any positive

integer (in the trivial case n = 1, the exclusion constraint is vacuous).

EUB1 .
R, | / - S
. / . - R {bl""bn}
N r’ - \-\) . \\
(A i : @ » & (A S | ‘—@.}
- -~ —_ ..‘.) . - ‘ . ' . /
Vx(Bx =x=b V..V x=b) 7 WX(Rx=x8b)

- Vxy(xSy =RXx &y=b V. VRx&y=b) :
: L ' Co v Vx(RnXEben)

The described object case is set out in EUBL’. In general the described
- object version of a theorem is named by priming the name of the corresponding
lexical/numeric version. The members of {b,,...b,} are always '_1em'Cal or
numeric constants, and "=," denotes the refér'e_nce predicate for the simple

 reference mode r.
EUBT’

\/ — [— {00}

LS RRL o s (AN
,Q,/‘\\" ® S = _ Q'/F— S,
(& ey

Vxy(xSy = Ax & y= b V.. VR X&y% D)

Vx[Rx = 3y (xSy & y= b)]

Vx[an = Jy(xSy & yzrbn)]

Clcaﬂy, if the exclusion constraint is deleted from CS1, the uAniquenf:.'ssl -
constraint. in CS2 must be deleted as well, ‘We have dclibei"at_cl-y avoided h
spc_cifying :iny mandatory role cbx;strainé, so that the theorems have wider
applicability. If the disjunction of R.1, ., R,1 is mandatory then of
course so is S.1. Of more importance is the binary_-tcfnary-convcr_sion (INEI89.
. Pp- 222-5). The hasié .t-heorefns are EBT1 and EBT1’ | |

sec. 0.3 Equivalence or conceptual schemas ©6-36

EBT1

AT 1 ¢ < G 1S —G \‘
—~ s / /

/______ /\r " s [— -

Vx(Bx =x=b V ..V x=b,) . Yxy(xR)y =Sxby)
nyz(Syyz=sz&y b, V V xR,z &y= b) :

Vxy(xR,y = Sxb,y)

EBTT

{b,,..b,}
/ E
A YT S c
TS /
: ,/\ : .
&) = '
by,..b,} |
Vxyz(Sxyz = xRz &y=b V. VxRz&y=b) ny[ley 'E'E!z(szy &z=Db)]

Vxy xR, y Ez(szy & z= b

rn/

In NHZ9 (pp. 224-5) we introduced some new"variarions on the binary- ’
t\,rnarv conversion. We now spemfy these for the n-ary case. To save space

diagr ams are omitted.

EBT2 An occurrence frequency of n on 81 in EBTY1 or EBT1 s equwalen:
to an equallty constraint between roles R g, ,R A,

EBT3° An occurrence frequevncy_, of n combined with- a mandatory role
.~ constraint on S.1 in EBT1 or EBT1’ is equivalent to mandatory role
. constraints on each of R.1,..R .0 ' '

As a prelude to’ spéci-fj,’ing, further variations, we examine a binary-
ternary transforrnation presented by Falkgnbéi‘g (1986). This example also
illustrates how a formal approach. can be used to clarify and check proposed
equivalences needed for ap]ﬂications. Consider the two schemas of Figure
6.24. To. simplify" the discussion we have made Statuscode léxical,“and

1t l!

shortened "supervisor" and “worker" t and "'w
According to Falkenberg, the schemas in Figure 6.24 may be ’lIansmr"led

into one another. However, even if definitions were supplied to u'anslai\,

&27

between the different predicate symbois, the constraint patterns shown are not
equivalent. The uniqueness constraint in CS1 is not captured by CS2, since
the latter permits an cinpl_oyee to be both a woﬂ;er and a supervisor on the
same project: what is required here is a pairwise-exclusion-constraint-between -

the two binaries.

Tty

{ Statuscode,{ s','w'}

CSs1:
.. has on.a ’Staruscoae of
works_on ,
Cs2: v '
Employee S Project
supervises

"Figure .24 Under What conditions are CS1 and CS2 equivalent?

3~,. Moreover, the lower. umqucness constraint in CS2 is not captured by CSl
we need to add to- CS1 the constraint that each pI'O_]CCL has at most one
- supervisor. There is no graphic, notatlon in NIAM to do this, so we add it as
a textual constraint in KL (a graphic notation could be devised, as suggested
later) The contextual equivalence is set out in Figure 6.25, with predicate
symbols shortened to one letter. Here we have separated the schemas from the

- contextual - definitions by a broken line. Note that the textual constraint
(below the d;agram) ‘15 part of CS 1, not D1. ‘

' - {'s\'w cs2: —_—
- AW ' '
| X P
Vx(Px -+ 3?y Hyx's') '
D1 : Wxy (XWy = Hxy'w') ' D2: Wx(Cx=x='s'V x='w)
-+ VXy(xSy = Hxy's'). : nyz(nyz XWy & z="w' V' xSy & z='s')

Figure 6.25 The conditions for equivalerce are specified

VTl U LYUVAISHILG Wl LUNILSAUAL DSULEHITHHad 6‘58

Note the sirnilarity between Figure 6.25 and 'E'B’I"l._ Each uses a type
enumeration to juggle between shorter predicates and a longer predicate. The
crucial differences are the constraint patterns. One systematic and efficient
way tov deal with such uanSformatio_ns is to first specify more general
equivalences, and then specify the changes required when further constraints
ate added. EETI and EETI’ are general equivalence theorems which licence
transformations between n predicates of arity m and a single predicate of
arity m+1-one of whose object types is, or injects to, an enumerated set of n
objects. o , . o
Although EET1-2 allow S to be transformed into a disjuhetion of smaller
fact types, this does not entail that S is compound. A fact type is compound
(non-elementary) iff each instance of it is equivalent to a conjunction of .

smaller facts. So S may still be elementary.

EETT
o b0}
/ Rl ‘\ '«\ 1. ‘n\
. . -— A A+ B i
G - PN L NG
. 1~ .

V.. Vx=b) : ,
&y=b V.VRx&y=b) : .

R, i s
l {b,,...b,} »
Vxy(Sxy =RXx &y=b V. VRX&y=b) VX[R,x = 3y(Sxy & y= b.)]

WXIR,X = By(Sxv &y~ b,)]
X =X.X,F e

sec. 6.3 Equivalence of conceptual schernas) 6-39

For convenience we specify theorems with the enumerated type B in a
- particular position. Analogous theorems apply when B is shifted to any other

* position. Theorem ERP allows roles to be permuted in any order by renaming

the predicate. For example, we may wish to replace the fact type Person
works_for Department by the fact type Department employs Person.

ERP _
| K N N N
Alz/; An,/‘ All ’/‘ Al,— /“
R ' & S
“‘v’xil..xin(Sxil..xin = Rx;..xn)_ . Vxl..xn(Rxl...x,-l =8x;.%;)

{i..i_is a permutation of 1..n
1 n .

Theor_eme EET1-1’ made no mention of uhiqueness constraints. SinceaUC
spanning all roles of a predicate adds no information, the theorems entail
that a UC spans all of S if and only if UCs span cach R, j=1ton FfaUuc
is stronger it must span all but one role (otherw15e the fact type is
cornpound).‘ We divide these stronger situations up into three cases and
specify the relevant theorems. In the first two cases, the role played by B
is included in the scope of the UC. In the first case S is not a binary. -

EET2 Corollary to EET1-1" where'S s at least a temary: if a UC is added -
which spans all but role i of S, where i < m, then for each R j=.
1to n, a UC must be added spaﬁnlng all but role iy and. conversely

- The UC constraint mapping for EET2 is summarized in Figure 6.26. Here
we take it that B either is {b,,...b,} or injects to this via some reference
scheme. Given generalization by }fole permutation, ‘it is clear that EBTI-1’
are just special cases of EET2, where m = 2. - ' - '

o~ « = ~4b,.b}
\ \ Rt Rt
Al/l‘ .o Al ’{ ».. qﬁl} B /Il . .
i - |

R | i m j=1ton

Figure 6.26 Mapping uniqueness constraints in theorem EET2

s i g T U o T o 1t k0 , 6-40

Corlsidcr thé schemas of EET1-1’ whenm =1 and auC or1 S spans only the
role played by B. If S maps each object in B to at most one object in A, each

R; can have at most one member. This leads to theorem EET3. Its simpler
version (where B is lexical/numeric) is depicted in Figure 6.27. T

EET3 Corollary to EET1-1” where S is binary: if a uc exactly spans the
role played by B then #R <1 & .. & #R, < 1; and conversely.

/Rl ;» , L | _{?r--{b}z}

" . — .
\ \ - - \
/\ . L _7

o N R o I ' '

n

CHR £1&.L&#R <1

Vx(Bx = x=b. V .. V x=b) B Vx(Rx=xSb),i=1ton
Xy (xSy = Rx&y b, V. VRx&y b,) '

Figure 6.27 The simpler version of EETé

Asan chmple of EET3 wheré B is described, recall the following nl
- ‘binary fact type from scc'aon 6.2: Ofﬁc1al (namc) holds PO.:HJ.OII (code)
{'P,'S' 'T} Under the context' spcc1ﬁed this may be transformed into a
schema with three unary pI'Cd]C&tCS (Is_prcmdcnt Is_secretary, Is_treasurer)
each of which has a cardinality limit of L '
- If, for the situation of EETS3, _the role S.1 is- mandatory then the
disjunction R, V. .R,1s mandatorv and #A s n (cf implication theorem I#”’)
- The next theorem deals with the case where the UC spans all roles except
the one playcd by B. The basic Corrcspondcncc between the exclusion
constraint in one schema and the UC in the other is-shown in F1°'UI'C 6.28.
_Each orerand of the exclusion constraint is a whole prcdlcafe "
Thecrem EET4 applies for all values of m. Clcarly, EUBl -1’ are just
p°c1al Custs Of EET4 when m = 1. '

CSTU, 0.0 CYUIVIGIIVE Ul CUIICEPIUEI SCNEmas , , o 6-41

EET4 Corollary to EEI'1-2' if a UC spans all roles of S except for B's

role, then R R are mutually exclusxve and conversely

1’ "y

{bll 3 n,‘

o 968

Figure 6.28 The UC in one schema corresponds to the X in the other

Figure 6.29 illustr2zes both EET2 and EET4 for the case m =2 The
definitions abbreviate the predicate symbols to their first etter.. fThe
leftmost UC maps to the exclusion constraint (EET4); the other UC in CSl maps
to the two 51mplc UCs in CS2 (EETZ)

~Cst: e cs2: .
o {'cap, co } _ : captains
Id - - [N -
. Statuscode’
.. has on... a statuscode of .. o : is_copilot_for
D1: ¥xy(xCy = ny’c'ap') . Dz Vx(Sx X= cap V ox=" co)
o ny(xly Hxy' co) L nyz(nyz xCy & z="cap' V xly &z=" co)

F:gure-6.29 Constralm mappmg examples of :ET2 and EET4

Another. application of EET4 for the case m = 2 is the equivalence -
considered earlief"in Figure 6.25; however we still have to specify a general
theorem 1o cover the correspondence between its textual constraint and the
simple UC. " To 'fécihtatc tnis task, we first classify this kind of textual
Constraint. Suppose the ith and jth toles of predicate R are played by object

- types A and B. Then if the combination of eac':h'obje‘c__t' in A with a given
"o.bjéc't b from B is unique within R, we say that there is a restricted
'um'c, eness consrramtoanctwean andb. Suc,h constraints may be spcc1ﬁed '

~ textually (see the formula in FIUUIC 6.30).

sec. 6.3 Equivalence of conceptual schemas 6-42

A/' B .
SE 1T
——— —-b'—-—»'.

X[Ax - E?X(Rx&yi=x&yj=_ b)]

Figure 820 A restricted UC on R between A and b, where b € B

- As ‘an aid to visualization, we have also shown this constraint
graphically as a broker uniqueness bar including an "image" of b. “This image
b is wﬂtten the way a table entry for b would be written: if B is numeric
then b’ is b; if B is lexical then b’ is b with the ‘delimiting quotes deleted;
if B is described and b =, e then the table entry form of e is used. Since
NIAM already has many graph1c notations, this new notation may be ignored in .
favour of the textual version. Note that if B is described and b =, e‘then
the condition y; =b i 1s expressed as y;

The textual constraint in Flcure 625 is thus a restricted UC on H
‘between P and 's' (this could be shown graphically as "e—~ s ——" below
the_rloles for P and C). The following theorem specifies how such constraints
‘traﬁsform into UCs in the context of EET1-1’. The case where S is a binary
. may “be 1°nored since it is already eovered by EET1-1’ (a full UC must exist
 between A and B)

EET5 Corollary to.EET1-1% if -S is at least a ternary, and a restricted
UC is added between A; and b, where'b is or injects to b then a UC
must be added to R on the role played by A; and conversely

If S is. loncer than a ternary, then R; 'is splittable -since it has a
snnple key on R;i, and R is at least a ternary. A general requuement of
the conceptual schema des10n procedure is that compound -fact types be
eliminated in favour of elementary fact types. Hence, in this case, Rj moust
be split on A; into binaries with each of the other.A’s, with a simple UC on.
- the role played "by A; in each of these binaries. We discussb'splittin'g
transform™:ions shortly. o |

Note that the EET transformatlons cannot su'nply be adopted when the
enurneratlon constraint {b,..b,} is replaced by. a cardinality constralnt of
~ On on B. To develop analogous theorems for cardinality constraints we need
to know that #typeB = n, not just #B £ n. Moreover, we ueedto identl_fy.the

sec. o.g £quivaience or concepiual scrnemas 6-43

members of B to supply trauslations between the predicates in the different
- schemas. So in practice an enumeration is needed. .

Sometimes, for the same predicate, more than one object type is
enumerated (e.g. - see NH89, p. 152, Figure 6.43). 1In this case the EET
theorems may be applied more than once. Theorems EBT2-3 have obvious
generalizations for this situation (note that when an n-item object type is
ehmmated here, the relevant frequency constraint is divided by n).

We now discuss a class of equivalence theorems (ESCL..) for spln‘nng
compound fac_t types or combining simpler fact types. . The splitting and
‘combining transformations basically correspond to the relational operations of
-projection and natural inner join respectively (e.g. see NH89, sections 43,
5.3). For concebtual schema desi gn purposes, ESC equivalenceé are always used
in the direction of splitting, since we aim to eliminate compound fact types.
For relational database design, some recombination usually takes place
| A fact type is compound if and only if it can be expressed as a’
conjunction of simpler fact types.” A fact type which is not -compound is
elementary. By far the most important case is deciding whether a rernary fact
type is splittable." We first examine this case generally, and later consider.
the impact of functional dependencies For a ternary predicate R over object
types A, B and C (not necessarily - distinct), we need to consider the
poss1b1l1ty of sphttmcr on A (i.e. splitting into two b1nar1es over A-B and
A-C), on B, on- C, or into three binares. ESCI Spec1ﬁes the predicate .

‘translation context for splitting/combining on A, o
ESCT . j , L »
5 1(c - Al —(&)
R | _G ,

| Vxy(xR)y = 3z Rxy2) . _ .
Vxy(xR;y = 3z Rxzy) Vxyz(Rxyz = xR,y & xR 2)

-Notice the equahty constraint. This is required since we do not allow
null values at the conceptual level. The contextual wanslations are crucial:
unless these: hold the sphttmvf/co*nbmmU cannor take place Analogous
theorems apply for sp11tt1no/f‘fj'nb1n1n on B or C. The 3-way spht 18
 specified in ESC2. - |

sec. 6.3 Equivalence of conceptual schemas 6-44.

ESC2
ai(Bi(c) A — R, B!
- ks - B . , K
e ROV
R R, R,
=4 P A =

Vxy(xRy =3z Rxyz) - ' v A

Vxy(xR,y = 3z Rxzy) o _
Vxy(xR,y = 3z Rzxy) - Vxyz(Rxyz = xRy & xR,z & yR.2)

If a role is a‘si‘mple key or functionally determines other roles then its
- object type 'is-usually chosen as the node on which the splittinc takes place.
If this happens for more than one role, a choice exuts we do not consider
such cases here. The next few theorems spemfy the 1mpact of some additional
Fps. To save space, d1a0rams are omitted. -ESC3 and ESC5 are easﬂy proved
and ESC4 lollows 1mmed1ately from ESC3 and IFD1.

ESC3 Corollafy e ESQ1-2: if A functionally determines B (or C) in R,
then A has a simple UC in R, (or R)); and conversely'
ESC4 Corollary to ESC1-2: if-A has a'simple UC in R then it has a s:mple
-~ UCinR and R,; and conversely. ' '

ESC5 'Corollary to ESC1-2: if B and C form a composite key for R then a
‘ UC-applies betwaen R,.2and R,.2; and conversely..

As the arity of a fact type.increases, the number of potential ways in

- which 1t might be split i increases rapldly We specify only the most anortanL |
- case (n- ary fact tvpe lolfrom n-1 blnanes with common node). - ’

 ESCé

R | e '\“ o
B ‘ e T
S ,,,R _.—Q,‘.

_V [ny Eiz(Rz&x z &y= z)]

'-ny[XRn_l n—1 n) »

y EIz(R"&x—z &y z)] VE(REExlFilx'z&'..'&xR

ESC6 depicts sph‘mncr on A,. Analogous results hold for Qphttan on.

| ,v‘other nodes. ‘Equality constraints arv spemﬁed between . adJau,ent first Toles

' (Rll ‘and R, 1' etc) Since the 1dennry relation (—) is Iransmve ‘this
1mphes that all first roles have 1dcnt10al populatlons '

sec. 6.3 Equivalence of conceptual schemas - ‘ 6-45

The following theorems are generalizations of ESC3-4 to the n-ary case
just considered.” Theorems ESC6 and ESCR are of special importance,' since they
are used in the proof of the ONF (optimal normal fo;m),_g_r,Q_uping_anoIithm.,.'_.,-*__._. _

ESC7. Corollary- to ESCE: if A functlonally determmes A in R then A has

a simple. UCinR,_; and conversely.

1_1’

ESC8 . Corollary to ESC6: if A'1 has a simple UC«in R then it_has a simple

UC in each of R, o R,y and conversely.

n‘fl’
The research literature on the relational model of data includes numerous
examples of splitting/combining transformations. In NIAM, these form bbne of
the four classes of equivalences cited by Falkenberg (1986). While the
. formulation of the ESC theorems in terms of contextual equivalence is our own,-. »
the ESC theorems stated here have well known paréﬂlels in relational theory.
We now considera class of schema implication's and equivalences based on
frequency constraints. Over the last few years we ihcluded examples of this
class in our lecture notes and exercises: In an earlier paper (1988c) we
‘referred to this class vas "role disjunction Thouc*h examples in. this clasc'
often occur 1n practical applications, the only discussion besides our own
that we have seen in print is by Leung (1988), who states, without proof, two.
A results_ for the 3b1_nary case.. Deve_loped independently, our approach_dxffers
from Leung’s bi/ being more general, and formally rigorous: though statedas
equi,\iaiences, Leung’s 'example_s are aetually just one-way implications,
Before specifying some general theorems, we-eonsider a simple example
(see Figure 6.31). InCSl eéch employee has at most two phones. 'In CS2 each
employee has at most one phone'l and at mostone phone2 which must differ (if
~ we wish to assert that an employee has a phone? only if he/she has a phOuCl 2
: - subset constraint should be added from has phone2 1'to has phonel._) Canan-
_ ,equlvalence-context be specified for transforming between CS__l and CS2? -

cst: o : L cs2: . has_phone1
" has_phone L ,» ~
- ; - X (Telephone
‘(Employee }— Telephone . -
1;2 /
has phone2

anure 6. 31 Oan an equrvaienf‘e context be specmed’P

sec. b.3 Equivalence of conceptual schemas - ‘ 6-46 -

CS1 may be defined in terms of CS2 by addin g D2: vxy(x has_phoney =x
has_phonel y V x has_phone2 y). But there is no feature of CS1 which can

provide a definition D1 of the predicates in cs2. In this sense, CS2 is

"stronger” or more informative than CS1. S1rm1ar1y, the captain-copilot
schema in Figure 6.29 is stronger than a schema with a single binary saying
that a flight has at most two pilots.. The stronger schemas-have the added -
advantage of having simple UCs, which enables the information to be stored in
the satnle table with other attributes of the key. | :

In such cases the designer will often choose the stronger schema. We now
~ set out some relevant schema implication'theorems To distinguish schema
implication theorems from constraint implication theorems, the names of the |
former start with "Im". ‘

ImFC1

= 1:n

Vxy(XRy = ley V.V xR'ny)

. ImFC2 Corolléry to ImFC1: if an equahty constraint applles among roles
- R 1, +R,.1then R.1 hasafrequency constraint of n. o

ImFC3 4 Corollary to ImFC1: lf roles R 2,.,R;.2° are nutually exclusive . and :
o each has'a snmple UC, then R.2 has a simple UC.

" Sometimes ‘an equivalence, rather than just an implicatien result; can be
Obtained by uéing additional context which enables each of the disjuncts to be
defined in terms of the bther schema. For example, let us modify the
situation of F10rure 6.31 so that globally, each telephone has exactly one -
location-code wh1ch classifies it as a work or home phone. An equivalerice may
now be specified as ._s_thn in Figure 6.32.. From IX2 the subtypes are
exclusive and so are the roles’ W.2 and H2: we omit these exclusion
-constraints since they are 1rnp11ed The textual constraint says that no -
~employee hastwo phones with the same location code. The predlcate dlctlona_ry ;

_ is: E = Employee, T = Telephone; WP = Worl’phone HP Homephone; P =
- has phone W = has. workphone H—has homephone L =has locatloncode

OTL. V.0 LYWIVaITHLT Ul CULICEIUE SCHIEITIES . . 6-47

O B

' A ,_L~) .______...] . "_];‘

{'W‘,'h'} I: . o .' . '{'W",fh'})
{ No emp. has 2 phon'es'wit.h the same Iocationcode . VX(WP x = xL'w")
Vxyzuv{xPy & xPz & y#z & yLu & zLv = u#v) T WX(HP x = xL'h")

S WX(WP x =xL'w') PR _ S Wxy(XPy = xWy V xHy)
Vx(HPx =xL'h") ' . :
- Uxy(XWy = xPy & yL'w")
Vxy(xHy =xPy & yL'h)

_ Figure 6.32 The additional context supports equivalénce‘

In practice, the structure of the -additional context required for -
equivalenice depends on"the particular case, though the basic form in this
ekaﬁlple is‘th'e most éommon; For simplicity, we specify our équivalencé ,
theorems for those 'cas'es where the context can be provided as simply: as in
this example;-described object types mdy be catered for in the usual way (We
give an example in the next chapter). The cohstants E:.l' ,-C,, are lexical or
-numeric. If the additional context is not required globally, the designer may
*deliberately weaken the schema by deleting this context. '

"

EFCY o

. _G_fé v GLR

1in

Wx{Bx = xSc)), /= fton = _ , nyz.uV(ny & xRz & y#z'& ySu.& zSV = uzv)
 Yxy(XRy = ley V.. VxRy) - ©Vx(Bx=xSc), i =1ton

VX(xRy =xRy &ySc), /=1 ton

"EFC2 * -Corollary to EFC1: if an eduality constraint. applies among"roles.
~ R.1,,R,1 then R1 has a frequency constraint of n; ~and

conversely.

seb, 6.3 Equivé/ence of conceptual schermnas : ’ _ 6-48

EFC3 ' Corollary to EFC1: if roles R1.2;..,R,;.2 each has a simple UC, then
. R.2 has a simple UC; and conversely. B

~ We now briefly discuss nesting/flattening transformations. In NH89
(section 10.3) we extended the traditional treatment of these traris_forrnations'
by considering the impac: of rnandatory' roles, and d.éyeloping an algorithm
based on the degree of overlap of participating pair types. We have spaée
here ohly‘ to discuss a couple of ex’amplés. In the next chaptcr we discuss
| some applications of the overlap al gorithm. The following théOrems are among
the more important in this class, and should be suffiment to 111usuate the

' rclcvant fomlaluanon issues.

ENF1.

VxyIXTy & Bzwix = (z,w) & Rzwy)] | Uxyz(Rxyz = (ey)T2)

- In our formalization, since the pair function is generic there is no need
A to’ introduce a special fhnCtIO'l or pred: ate to handle specific cases of
_ncstmg, and hence no se*warate clausc is needed to translate the embcdded part

An the fi attc,nrﬂ" versmn

ENF2. _Cbrollary to.ENF1: if an equality constraint exists between 'S and.
' "+ R.1-2then the role T.1is n1andatory; and conversely.

If it 15 not desired to actually store S in the flattened version, thcn
it ‘may. be specified instead as a derivation rule. ThlS is set out as ENFZ*
. Compare this with ENF2. -

ENE2*
,) $\“ “_\\ /—’\\- .\\,’
A B NG c,
N -7 \‘,/ S ‘
o — i 2
_ ny[xTy sz(x = (z, w) & szy)] : . nyz(Bxyz = (x,y)Tz‘)

_ny(xsy 3z Rxyz) |

sec. 6.3 Equivalence of conceptual échemas ' o 649

The next theorem discusses the impact of uniqueness constraints.

ENF3 ' Corollary to ENF1 and ENF2*: if a UC exactly spans,R 1-2_then..a...
_simple UC spans T.1; and conversely '

Further nesting/flatiening theorems and ‘several examples are discussed in
NH89 (section 10.3). As discussed later, we generally prefer the flattened
version unless the paJI typc plays more than one role or at least one opt1ona1
role. , ‘ : : : |
' The last of the four "craditi'o'nal NIAM schema transforma’ridns deals with
‘the use of a compositely described object type (see NH89, section 10.4). This
is analogous to ncsting/ﬂattenin5 for 'the mandatory role.case. The following
two theoremsi in this category are representative. For naming purposes, we niow:
include. these within a more general class of transfoxmatmns we call object
type addition/deletion. ‘

EOA1

. v » .A. \
Hs| (7)1 | A s

B

.

w -
\ 2

~N oL

\

. _/’ : .

\. Vi

1

: ny [xUy = Elzw(xSi & xTw & Rzwy)] -~ . ‘VXYZ[nyZE Iw{wSx & wTy & wlz)] |

In-pi'acticc, if t‘ncicft—'_hand'opﬁon is.chcsen, D is deleted unless there.

- is-a good reason for retaining it (e.g. if D 'pllays'othcr rol_es »glbball_v\.

;EOA2_' Corollary to EOA1: if a . ucC exactly spans R.1-2 then a sxmple uc
‘ spans U 1; and conversely ‘

- Otject types fnay‘ be introdhCéd simply bécause the designer finds it
‘conceptually easier to think 1‘1 terms of them, or because they play other - -
roles in the crlobal schema. "’th may even happcn with simply described types.
For. cxampl the fact that Reacan has a gender with code 'm' could be handled
as a simple blnary betwecn Person and Gendercode. BLt usually one wishes to

.-thmk in- terms of Gender: in tk is case the iaformation is handl=7 as two -

sec. b.3 Equivalence ot conceptual schemas _ L 6-50"

binaries (one fact and one reference). Introducing a new described object
type leads to a stronger schema, as indicated in the following schema
implication theorem..

GO e G
// . . o 4 o =7)
Vxy[xTy = Jz(xRz & z5y)]

.’We briefly note another class of schema cquivalenécs d_cahn g with choice
of derived predicate, -according to the dcorees of freedom available. For
cxample the schemas in F1crures 5.24 and 5.25 are cqu1valcnt What is perhaps
surprising is that the altematlve derivation rules -are not equivalent by
themselves. To obtain equlvalence the completP constraint paiterns ‘shown in
these schemas must be included. Though not included in this thesis, the
formal proof ('by deduction tree) is irisn'uctive in highlighdng the part
played by each constraint to produce the equivalence. -

Another practical example.of this kind is dlscusscd in NH89 (p. 168).

The ba51c schema is set out in Figure 6.33. Here a subject may be identified
either by its subject code (e.g. "C5112") or by the c’Ombination of its
~ discipline, level and serial#. However the subject code is just the
concatenation of the disciplinecode, levelcode and serial#. So one has LheA
option of making the suchchode predicate derived or of making all the othcr‘
three predicates derived (manaatory role dots on the derived roles are 1rnphed
and are bef,t ormtted) Conceptually, either choice may be taken, and our -

* formalization of String operauons and refcrencc enables the derivation rules .
to be spcmﬁed without dlfﬁculty. ‘The two d.1ffercnt schemas resulting can

- be formally proved o b_c'eQuivalc_n;. . ' |

isin | \Di'syc'ipline (code) <aa>

,\f/
isat
i - '.- '//—'-\\
o . , .
P—lhes | . —— Serial#! <dd>
’ . *SA—.’/ : .
has | | \Subjectcode <aaddd\

~ -

Figure 6,33 A basis for two choices of primary reference scheme

sec. 6.3 Equivalence of conceptual schemas _ 6-51

One new equivalence theorem that we will make use of in the next chapter |
‘is. set out-as ESS1. It deals with the case where binary predicates: with
simple keys are bound by a pairwise subset constraint. From IFD2 and IU2 it

follows that R.1 is a simple key. The rest of the proof is obvious. In '~
practice the tr'an"sforrnation fromi left to right is usually preferred.

ESS1
s | . s | —~/r; 3

“/{ I’y . \‘ . \\/ 4 _//l
A = B | AT :

/\ : -] /\‘ ~

N R - o T

| o | L

wx(x=3yxpy) Vxy(Ry =xSy &Tx) ~ °

Other equivalence theorems have been developed (e.g. . to transfogn'
between figures 5.15 and 5.16), but Ihe:e 1s no space in this thesis for a
» full_'aqéoﬁnt of: our work in this regard. The ‘main _‘con'tribution. of this
section has been the provision of a rigorous foundation for specifying and

- proving theorems concerning schema equivalence and implication.

7 Some applications to relational data-

‘base systems

7.1 The ONF algorithm: constraint mapping
In this chapter we discuss some practical uses of conceptual modelling in the
- formulation of schemas to be implemented in relational databaSe systeras. This
section'indicates how conceptual constraints may be mapped onto relational
' constraints. | The -next section illustrates varieus ways in which the
“conceptual schema may be opt1mlzed before the relatlonal mapping takes place.

In the final section, a global optimization procedure is outlmed for
' SC].CCtlIlO' transformations to apply to a global conceptual schema.

A relational schema spec1f1es the UoD in terms of constructs supported by
relational database systems. We assume the reader is familiar with relational
database systems, and SQL in particular. Relational schemas differ from NIAM

_conceptual schemas in several ways. In a relational schema, facttypes are

often compound, and may include null valu.es. The roles of these p_redicates
(table types) are given attribute (column) names. = Object types, are cal_led
domains, but few systems provide support for domains other than lexical, -
,numeric date and time. General subtypmrI is not dJrectly supported, but -
subtype constraints may be coded as procedures. v

" The distinction between stored and derived fact types is 1'nportant for

relational systems. Stored fact types (base tables) may be used for updates.
- and queries.%-"Derived fact types coded as procedures can be used only for
" queries. Some derived fact types may be deﬁned as views (virtual tables):
 these may be queried but only in simple cases can these be updated (e. g views
defined -in terms of a join are non-updatable):\ Some consu‘aintS‘ _rnay'be
“enforced within base table and index deﬁnitions, but many constraints need to
be coded as procedures Typically, relati_onal database'systems:do not support - |
recursion, SO recurs1vely denved "fact -types (e.g. ancestorhood, parts
explosion) are usually handled bv embeddmg the system within a recursive .
,lanvuage \e g. Prolog) ‘ -

- In contrast to tradrtronal .1ormal1zatror1 approaches NIAM ﬁrst produces

a concep tual schema and then maps this down onto arelational schema. InNH89 |

sec. 7.1 The ONF algorithm: constraint mapping o _ 72

(pp. ..247-273_)'we. discussed the mapping process in detail; we have space here
only for a brief treatment, focussing on constraint mapping.

Although not discussed here, a rigorous treatment of.thismap.pingmay_be..w

developed within our formalization by extending our conceptual framework to
cater for null values in the relational sense. Basically this can be done by
allowrno the null obJect to play any non—referentml conceptual role and -
: provrdmg appropriate semantics. _
In NIAM, a conceptual schema has its stored .fact types grouped 1nto |
~relatlonal ‘basé tables via the ONF (opnmal normal fomz) algorithm. Each -
- fact type is grouped into only one table (hence no redundancy). Composite:
i keys map to separate tables. Simple keys attached to the same object type are
grouped into the same table, 'k‘ey_ed on- the object- type identifier. Bach’
remaining fact type maps onto a separate table. With 1:1 fact types a choice
is made .favoun'ng- fewer null values. Sbubtyp_es a_re- absorbed into’ their
~ primitive supertypes before mapping. We make no claim to originating this
aloonthm which has long been used within NIAM and other methodologies.

Provrded the conceptual fact types are elementary, the tables produced
by the ONF alaonthm are in 5th normal form. The term "optimal normal form""
was used by Nijssen to emphas1ze that not only are the tables in 5NF but also
. some optimization has been achieved (e.g.a effort has been made to minimize
'the niimber of tables) ‘The alconth'n can.be reﬁned further to result in
fewer tables for certam 1:1 cases, but we do not discuss this reﬁnement in
 this thesis. '

The’ ONF alcfonthm ‘appiles to. crlobal schemas It also applies to
subschemas so lonig as no object type in the subschema has an additional simple
Ley attached in the global schema. Whrle the ONF alconthm provrdes a s1mple
safe and reasonably efficient means of ‘grouping fact types 1nto tables, it
- fails to specify how constraints are mapped (except for keys)._ Apart from our
- own work we know of no analysis which augments the ONF al gon'thm by
: comprehenswe constraint mappm0 - Various aspects of constraint mapping

' were 1ntroduced in NHS89. We now summarize and expand on this work.

In specrfymg relauonal schemeas, we use a shor\t;hand notaticn which
includes constraint ‘markers. . Many of the conceptual. notations are'_'_used or
~ adapted; in some cases new notat_ions are_'used. An intra-table uni‘queness
constraint is shown by underlining the names of columns spanned by the UC; |
' alro{évheads are added if the columns are not conti ouous If there is more than
- one candldate key, the primary key is doubly underlined. Equa_hty constralnts

are shown as dotted lmes w1thout arrowheads :

sec. 7.1 The ONF algorithm: constraint m_appihg' : o 7-3

While most NIAM constraints map directly to relational constraints,
special treatment is required for mandatory roles since object types are not
directly supported. A column is assumed manddtory to its table (i.e. not

null) unless an optional marker "OP" is appended. Mandatory and optional
roles of .the same object type that.map to columns' of the same table are
declared mandatory and optional, resp_ectiw)cly, for that table. When two roles
 played by the same object type map to columns of different tables, proceed as
follows: if both Toles are mandatory, specify an equality constraint between
their target COIﬁIIﬁ)S' if only one ‘rolc is optional specify a subset constraint
from its target column to the target column of the other. |
To illustrate the bas1c idea of constraint mapping, consider the ourput
report shown in Table 7 1. Here the codes "C" and "S" denote the possible
coal Kinds. (coking and -steaming), and "?" denotes a null value, indicating -
that for some reason or other an actual value is not recorded. |

f

mine - country yropened. coalkind = reserves (Mt)
Lucky Usa 1985 C 120
. L S 120
Rocky USA ? C 395
o R S o
Newie UK 7 ? ?

_Table 7.4 Extract.from a rEport about coal mines

Assurmng the populauorL of this ‘table is s1crn1ﬁcant one Wd\ of

conceptua”y schematxzmc thls is shown in Flgure 7.1.

is located in

- ... has reserves of ... in amount ...

Mine
(name)

opened in -

Figure 7.1 A .conceptual sohema f_or Table 7.1'

Usm0 the ONF aloonthm the three conceptual fact types ‘map into two
ta‘wles as shown in. Figure 7.2, with kcys as 1nd1f'ated The mandatory roie
constramt is captured by the (default). declaration that columns mine and
counrry are mandato-v for table Coalmine, tocrether with the subset constramt'

ﬁom CoalReserves rmne to Coalmme mine.

sec. /.7 Ine UNF algoritnm: constraint mapping - o 4 ' 7-4

Notice also. that the frequency constraint of 2 and the enumeration
constraint {'C','S'} carry directly across. Though not shown here, the
syntactic data types for the columns must be specified to be consistent with

the reference schemes: so mine ‘and country are lexical (e.g. varchar) and
yr_opened and reserves are numeri¢ (e.g. smallint). In NH89 we gave examples,
of specifying.syntactic domain constraints below the column uames (e.g. a
conceptual constraint of <c20> on Countrycode may be written as vc20,
meanin g varchar(20)).

Coalmine (mine, country, yr_opened OP) - v

CoalReserves (mfne, coalkind, reserves)
2 {IC‘I’IS|}

Figure 7.2 A relational schema for Table 7.1

Once the relational schema has been specified in this way, it is
'translated into code (table definitions, procedures etc.) understood by the
particular database management system (DBMS). Both the mapping from the
conceptual tc the abbreviated relational schema, and the subsequent mappin gto
" the DBMS ¢ode can be fully automated. waever, the latter mapping g depends to
varying de;rrees on the target relatiorial DBMS. Flgure 7.3 111ustrares the
mapping of the schema in Frcrure 7.2t0 an SQL system based on extended ANSI

- SQL (see Date 1987 ch. 11) assuming. approprtate syntacttc domains Have been

- specified. - ' ' ’
The code for the frequenr'y cons*ramt assert1on is not standard but this
kmd of facility is prov1ded in some vers1ons of SQL. In basic’ SQL the
constraint can be enforced by storing the embedded select comfnand as aroutine
and running this each'time an update is atternpted (with autocornrmt oft) For
efficiency reasons, if many elementary updates 1nv01v1n0 such constramts are -
issued, they are best processed as a bulk transaction.’

Many current SQL systems do not even support the ANSI extensions used
here. With such sy stems the pnmary key constramt can be enforced either by |
creatm'r a unique 1ndex or by running a ‘query to check for entry groups havmcr
‘count(*) above 1. The subset constraint expressed in the references c]ause .
can alsc be enforced by checking that no rows are returned by the foHown
query: select mine from CoalReserves wher?> mine not in (select mine from
Coalmiine). This is an example of "referential integrity”. A similar approach

may be used 10 code equality and exclusion constraints. .’

sec. 7.1 The ONF algorithm: constraint mapping ‘ . 7-5

create table Coalmine .
{ mine varchar(20) not null primary key,
country varchar(20) not null,
yr.opened smallint .)

createljable CoalReserves

(mine varchar(20) not-null references Coalmine,
coalkind char not 1ulE o
o check (Coalreserves.coalkind in ('C','S")),
reserves smallint not nuii,

primary key (mine, coalkind))

on insert, delete, update of CoalReserves
if exists - o '
(select miine from CoalReserves
group by miine
" having count(*) <> 2)
then cancel," '
print 'Rejected: each mine must occur exactly 2 times'

" Figure 7.3 Extended SQL code for the schema of Figure 7.2

TIntra-table uniqueness constraints other than those on a primary key are
specified in extended ANSI SQL at table creation time by prepending the
keyword unique to the column list spanncd by the UC. Altematwcly, the -
unique index-or group count approach may be used.- Inter—tablc unlquencss
constraints may be enforced by chcclqna that no rows are returned when the -

tables are Joined and the relevant 0roup count is spcmﬁed to be above 1. An

example from the next section includes a UC between Asswned subject and
Instructs student: thrc the join attribute 1s lecturer: this' UC rnay be coded .
by checking that the following query rctums the nuH set.

select student, subject from Assigned, Instructs
where Assigned.lecturer = Instructs.lecturer
group by student, subject having count(*) > 1

The enforcement of irreflexivity is very efficient since this is a
'fresuictioh predicate”, i.e. the constraint can be tested for a given row by
examining that row alone. Hence, in extended ANSI SQL this may be specified
_és a check clause. For example, if the relation Examines (examiner,
cancudatc) where the columns are defined over the same domain (say’
Academic), is irreflexive this constraint could be coded as:

check (Examines.examiner <> Examines.candidate)

sec. 7.1 The ONF algorithm: constraint mapping 7-6

In basic SQL, this constraint may be enforced by checking for a null return
from: select * from Examines where examiner = candidate.
Asymmetry and intransitivity constraints may be enforced using correlated |

subqueries. For example, the relation Father of (father, child) is both
asymmetric and intransitive: these constraints may respectively be enforced by

 checking that the followin g querics return the null set:

q{ asymmetry check }
selecf * from Father_of X
where exists
" (select * from Father of - e
where father = X.child and child = X.father)

-{ intransitivity check }
select * from Father of X
" where exists S
(select * from Father_of Y
- where father = X.child and exists
(seiect * from Father_of
where father = X.father and child = Y.child))

The basic approach of checking for a null return from the relevant query
can be | used to code the relational version of every NIAM conceptual
constraint, including sz'z-bt'e‘ping; that we have discussed. The coding is
 straigh tforward, but we discuss no f.u'ther cases here. ' '

Database design workbenches are available which produce relational table -
. definitions from higher level specifications. Some automated des1Un aids even

generate code for a number of basic constraint types, .meludmg referential
integrity (6.g. see Casanova & Tucherman 1988). However, we kﬁow of no
 software product which performs a mappm gof NIAM constraints to the extent

discussed here. We plan to unp]ement such a mapper in the near future

sec. 7.2 Conceptual schema optimizcion ‘ 7-7

7.2 Conceptual schema optimization

Recent work by Falkcnberg (1988) argues for deterministic modelling, in

which each given UoD has only one "correct” conceptual schemaWhile our
. g y , . P

approach does include default guidelines for selecting schema trans-
_ foxmatibris, i‘t sili Jeaves a reasonable amount of freedom to the designer in
modelling the UuD (cf. Kent 1982). In this section we discuss the notion of
"thimizing": a chceptual schema before applying the ONF mapping. The next
section Qutline_sf éprocedure for optimizing a global schema. - It is beyond the
scope of this thesis to provide a complete treatment of this topic.
 Weallow that the same UoD may be portrayed by different, but cquwalent
conceptua] schemes. These may produce different relational schemas when the . -
ONF mappmv is performed Not only the width of the tables but also the
‘number of tables may differ. Fora given apchauon or expected query/update
pattern, one ‘of these relational schemas will be most suitable. One could
Start with any of these relatlonal schemas and’ then pcrform relational
transfo \nations to 1rnprovc the efficiency. |
‘However, rather than perfonua all the opt1rmzat1on at the -relational
level, we argue that it is better to perform prelzmznary optimization at the
conceptual lev2l by transforring the conceptual schema into a vcmon which
.y1elds a better ONF map. The higher level semantics are easier to work with,
the restriction” to ‘elementary fact types simplifies the transformation steps

and the OM« alconthm is kept s1mt)15 Of course, further optimization may be .

' apphcd 1ater (e g. tumncr with controlled redundancy). - A somewhat similar .
approach in the context of ER modelhnc has been rccommcnded by Teorey,
Yang and Fry (1986 p. 220). o
Thus, although opt1nnzat1on is not stmctly an iscuc at the conceptual

level once it is dec1ded that a relational DBMS will be used and an overview
of the expected query /update pattern is avaﬂablc there is much to be crame:d‘
by optimizing "the conc eptual schema for. this situation. 'Note that
“optimization” 1s a relative term: it is alwa yS p0551ble to. find a
r query /update pattem to make any schema from a claqs of equ1valent schernas the
, most efficient for that pattern. .

- However, our default guidelines are designed to favbur conceptual -
- schemas wh1ch prov1de an ONF map with fewer tables. “This rediices the number
of potenttal table joins, thus leading to faster data retneval for, as well
as simplifying the formulatlon of, queries which would have otherw1se required
additional _]OII’lS In addltlon updates which fermerly mvolved 1ntef-table :
constraints may be fac111tated by convers1on 10 mtra—table constramts

74

We gave one cxémple of conceptual optimization in NH89 (pp. 226-7). Asa
further example, consider the schema of Figure 7.1 (see previous section).
- The composite key on the ternary requires a separate table in the ONF map.
Because of the enumerated type constraintwon---Goalkind—we*can*replaéc this
ternary with two binaries. Using theorems EBT2 and EBT3 we obtain the

alternative conceptual schema shown in Figure 7.4.

is located in - has coking reserves of

Country
(code)

opened in. has steaming reserves of
. Figure 7.4 An optimized conceptual schema for Table 7.1

Instead of a composite key we now have two ‘simplc_ keys aitached 1 &n
~object type (Minc) which already has a simple key attached: so the new
binaries can be grouped into the table which records a_ttri’butés of Mine. When
input to the ONF élgorithmthis results in the relational schema of Figure
7.5. The cqua_lity constraint line between the "OP"s indicates equality
between the null value patfcrns. R |

C_oalr_nine ("mine,.:jcfilbuntry, yr_op_e_hed OP, c_reserves OP, s_reserves OP)
Figure 7.5 The relational schema obtained from 'Figure 7.4

- For miost situations the rciatior;ai schema of Figure.7.5 is more efficient
than that of Figine 7.2. Instead of two tables we have just one table. So
queries that formerly required a join of two tables can now be specified in -
terms of a single table. As 2 default guideline we select an equivalence |
transform (or an implication mansform if we agree to the specified loss or
gain of informtion) if we thereby rcp‘lécc a unobjectified .composite key with
 simple keys attached to the same object type. - This selection criterion
~ becomes stronger if the object type already has other simple keys attached; 1f
this is not the case, we at least simylify some queries which would have

required a self-join.

o
e e e b : 3-8

Note that the case where the composite key applies to an objectified
tuple type was excluded from the previous guideline. We now discuss an
example which illustrates the reason for this qualification, as well certain
other issues. Sometimes, using an equivalence o’ frafisform a subschema
'p'ro_duces an object type which is already present in the global schema. In
this case, care is required to avoid duplicafing the object type on the schema
diagram and to ensure its mandatory role constraints are specified correctly.

Consider the UoD-depicted by the schema of Figure 7.6. Here animals are
classified as‘ herbivores, carnivores or omnivores (h, ¢ or 0) according'as :
- they eat just pl'ants. just meat or both. For each zoo, the number of animals
j in stock must. be recorded. Optlonally, for any given zoo and ammal kind the

relevant food b111 may be recorded.

has herbivore food bill

‘has carnivore food bill-

..hasa..
stock of ...

Animalkind
code ,

A

@ . has omnivore food bill
Figure 7.6 A conceptual schema about zoo animals

This schema has an ONF map with two tables, as shown:

3 {hco}
- Stock (zoo, animalkind, quantity)

t
- Food (zéo, h_foodbill OP, c_foo'dbil_l OP, o_foodbill OP) -

: One way of imiproving it is to use theorems EBT2 and EBT4 to replace the
ternary with rhrefa '“andatory binaries with simple. Leys Zoo has herbwore
stock of Qty; Zo0 has carnivore stock £ Qty; Zoc has omnivore, stocL of va -
Zoo then has six simple keys attachcd so the revised conceptual schema maps

to just the following ONF table: .

Zoostock (zoo, herbivore. gty, carhivore_qty, omnivore_qty,
herbiv_fcodbill OP, carniv_foodbill OP, omniv_foodbiii OP }-

sec. 7.2 Conceptual schema optimization ‘ : 7-10

HoweVer an alternative optimization strategy may be used. Using theorem
' EBTI’, the three binaries of Figure 7.6 may be replaced by the ternary: Zoo
has Animalkind food bill of Money (see Figure 7. 8) '

... has a ... stock of ...
—

—
.. has a ... foodbill of ...

Figure 7.7 An alternative conceptual schema for the Zoo UoD
This schema has an ONF map with two tables:

- 3. {hc,0}
Stock (zoo, animalkind, quantity)
Y S .

Food (zoo, animalkind, foodbill)

But noncc the implied snbscr constraint (this follows from theorcm 183):
thc set of (Zoo, Animalkind) tuples in the new ternary is a subset of the
(Zoo, Ammalkmd) tuples in the original ternary.. This brings into play the
overlap aloontf'm which we introduced in NH89 (pp. 233- 8) to e}.tend and '
provlde 0u1dchnes for the nestin g/flattening transformations.
| The- basic: 1dea is to avoid duplicating the ov\,rlap of tuple sets by
ODJec:trfymor the union of the pair. types mvolved In this case the algorithm
. dictates that we absorb the subset in the supersct Wthh becomes objectified ;

w1th two atmibutes as shown in Figure 7.8.

~ has count

: has in stock

has food bill

Figure 7.8 An alternative zchema baséd on the overlap algorithm

sec. 7.2 Conceptual schema optimization 7-11

~ The overlap algorithm reduces the number of tables in the ONF map. In
this case, the schema of Figure 7.8 yields an ONF map with a single table,

keyed on the objectified pair type:

3 {h,c,0}
Zoostock (zoo, animalkind, quantity, foodbill OP)

In most cases, this relational schema would be regarded as preferable to the
single tabie option discussed earlier. Note that the role pilayed by Zoo is
marked as mandatory in Figure 7.8 since this constraint is to apply even if _
Zoo plays other roles in the global schema: in such a case this mandatory role
constraint must be captured by ‘inter-table et_]uality or subset constraints. as
discussed earlier. '

We now briefly dlscus< the general overlap algorithm. Though developeu
independently, our algorithm has some aspects in common with other research
on merging relational schemas (Navithe, Sash1dhar & Elmasn 1984). In
contrast to the approach of Falkenberg (1988), we permit nestlnv only when the
pair- type plays more than one role, or an optional role In other cases the
flattened approach is simpler and preferable partlcularly with respect to
specification of uniqueness constraints. |

Suppose that the schema includes two prechcates which include role
_' sequences that are ,cornpatlble (ie. the corresponding roles are played by the
~ same primiﬁve object tYpe), and each role sequence is exactly spanned by a
uni‘quen’ess constraint. Figure 7.9 pictures a simple but -common case. where
each sequence isa conucuous role pair. Let R and S denote the pair types
~ whose populat1ons are the sets of tuples constructed from the obJects playing
the roles or each sequence. Since R.and S are cornp :ible it is meaningful to

compare their populatroz. for each state

¢

Figure 7.9 The populations of R and S may be eompared.

S€C. /.2 Loncepwal scnema opumizaron . 7-12

Because of the uniqueness constraints, the possibility arises of
objectifying (making an explicit pair type from) R and S. In most cases R and
S may overlap. While this is allowable, it is generally preferable to avoid

duplicating the intersection between R and S by absorbing each into their
union. A role sequence is parsial if its predicate has other roles; otherwise -

the role sequence is whole. Th_e algorithm is summarized below: .

Overlap algorithm
case overlap condition of

RNS ={}:{disjoint }
add an exclusion constraint'

RNS+{}&RIS&S IR: {properoverlap }
objectify R U S attach other roles as a mandatory deJunctlon

R';S&-R;éS:'{Risapropersubsetofs}' ' '
objectify S, attach other roles of $ as mandatory and other roles
of R as optional (if R is whole replace it by an attached unary)

S CR&S#R {S/sapropersubsetofﬁ}
objectify R, attach other roles of R as mandatory and other roles
of S as optional (if S is whole replace it by an attached unary)

‘R =S: { identity } .

if R or S is partial then objectify R U S and attach other roles
as mandatory, else collapse to one relation with rest derived.
end. ' '

In applying this algorithm the designer must choose names for the new
'prediéates,' and accept the definitional contéxt specified in our equivalence
theorems. An :"efxample of the proper subset case was considered earlier (this
led to Figur_e: 7.8). - A_s"a_i'x"example of the identity case with partial role
pairs, consider a schema comprising the two ternaries: Mine has measured coal
reserves bf Coalkind in'Mass; Mine has indicated coal reserves of Coalkind in .
Mass. Mbreover, let there be an equality constraint bcthen the embedded -
(Mine,Coalkind) populations for these fact typés. We may now transform the
- schema into a nested version, objectifying the pair fypc formed from the
binary Mine has reserves of Coalkind, with mandatory roles attached for
reasured and indicated amounts, (ar:d an occﬁr’;cnce frequency of 2 for Mine’s
role). This maps to a single ONF table whereas tvhcﬂattenecllvversion rnzips to

two tables.

sec. 7.2 Conceptué/ schema optimization T T 7-13

‘ Asan examplc of proper overlap on whole relations, consider the two m:n
binaries Person plays Sport and Person coaches Sport, where the populations
may properly overlap. This maps to an ONF schema with two tables. Form the

binary Person is_involved_in Sport and objectify its pairs, with the following
roles attached as a mandatory disjunction: Playin g; Coaching. The new schema
maps. to a single ONF table.

Other examples of this overlap algbrithm are included in NH89. We now
consider some more complex cases of conceptual schema optirniz'ation. Tab]ve
7.2 is an output report for a UoD based on an extended version of a clasiic
and.awkward problem (see Date 1986, p. 377). I—Ierg lecturers are assigned to
teach exactly one subject, though many may be assigned to teach the same |
‘subject. For each subject taken, students have only one léctufér. Lécturefs
vniay teach only the subject which they have been assigned. A lecturer might be

assigned a subject but not teach it (e.g. because of poor enrolments).

‘student subject lecturer

- Brown A "CS113 Halpin
Brown A CS102 Rose
Smithd CS113 Nijssen .
Smithd CS102 Rose
Wang J CS113 Halpin
? . - CS226 Bloggs

Table 7.2 An output report’

Let us assume that no lecturer can be a student. Figure 7.10 indicates
an attempt to sche'maﬁze this UoD. For simplicity, reference modes are
omitted as they are not germane to our discussion. The uniqueness constraint
marked by a broken bar is impiiﬁ:d (from IFD2 and IU2), but is shown in case it
is nof..,obvioﬁs. Prior to our analysis of const'rainf irnpliéation, this schema

" would have been acceptable in NIAM.

is assigned

{ Subject

———
e —— —_———
... teaches ... to ...

Lecturei

Figurs 7.iC A first attempt to séhemaﬁze Table 7.2

sec. 7.2 Conceptual schema optimization ' 7-14

However, from theorem IFD2, the combination of the subset constraint and
the uniqueness constraint on the binary implies an FD from the first to the
second role of the ternary, ie. Lecturer functionally determines Subject in _

this ternary. So the ternary should be split on. Lecturer, resulting in Figure
7.11. Thc equality constraint follows from ESCI, and the lower inter-
pred1cate uniqueness constraint frorn ESC5. Throughout the transformation
process we assume that the old predicates may be retained as derivation rules
if desired (the precise form of these rules is given in the equivalence

theorems of the previous chapter).

is assigned.

‘ /g ,
t R .
mstr}mts _ | Student

Figure 7.11 Fa'ct types are now elementary

Two 1mp11ed constraints are shown. The simple UC on thc new b1nary is
1mphed by the UC on the top binary and the subset constraint (theorem TU1);
it is also implied by ESC3. The upper 1nter-predlcate UC is implied by the
other constraints (theorem IU4). Notice that the keys associated with the
subset Conétraint are now simple. Use of theoreth ESS1 now yields Figure 7.12.
The formaﬂ-y-“ implied inter-predicate ﬁ’niqueness constraint must now be

specified since it is no longer implied.

is assigned

(Lecturer.
: teaches

C

X

. § P
LN
- mstr}Jcts
. —

Figure 7.12 Theorem ESS* has been applied

sec. 7.2 Conceptual schema optirnization ' : 7-15

Now consider the equality constraint. The connection between equality
constraints and derivation rules has been discussed in earlier chapters. For

implementation purposes it is now convenient.to.remove-the-unary-from-the-- -

graphic schema by treating it as a derivation rule; if this rule is no longer
required it may simply be dropped. We are now left with the final version
(Figure 7.13). ' '

is assigned

instfucts s
L
—— ey

Figure 7.13 The'ﬁnal, ‘optimized version

. This maps to the following ONF relational schema:

Assigned (Jecturer, subject) ‘ —

0

Instructs - (lecturer, student)

} The transformation from the original table structure into this structure
is often used as an example of moving from 3rd normal form 10-Boyce-Codd
normal form, at the expense of requiring inter-table- constraints'.' In the
previous section we indicarzd how these constfaints may be sirxﬁply coded in
SQL. - The main point of our discussion here i§ to 111ustrate how such
transformatmns can be visualized d1a0r;_mmatlcally and Jusmled from the
fact-oriented approach

It is well known. that this pamcular problem can be neatlv handler‘ by
functional dcp end=ncy theory. However one first has to translate the problem
into FD theory. Moreover, the process of. solving problems in FD theory is -
~often less intuitive and harder to visualize. - Minor changes in’ constraint
patterns (é.g. - mandatory roles and subset constraints) can signiﬁc;intly
increase thé complexity of the treatment in FD theory. We believe the
appfoach developed here promotes a high level understanding of such problems
as well as highlighting the impact of constraints on. the fact -tj7p65' of

interest.

sec. 7.2 Conceptual schema optimization 4 7-16

In the previous chapter we discussed several other theorems for replacing .
composite keys with simple keys. We conclude this section with an example of
using a frequency constraint equivalence on a homo Cf.en,e,ous fact type. Consider
‘the conceptual schema of Figure 7.14. The textual constraint is ‘added below
the diagram s1nce no graphic exists for it: here predlcate symbols are

abbreviated to one letter.

Y- Person
{name)

Gender }- has |
{code

Ty

O S
paren!t of | as,it

)

1,2
TC1: { parents of the same child must differ in gender } :
' VXyzvwu U, (XPZ & YPZ & X#y & XHv & vCu, & yHw &wCu,~»u # “2)

Figure 7.14 A co’nceptual schema -before optimization

Because of the frequency constraint and. the capac1ty to define subtypes
in terms of the has_gender predlcat«= we are able to use theorem EFCl
(actuady its reference mode variant) to replace the compositely keyed
parent_of predlcate with a disjunction of two simply keyed predicates
(father_of and motiter_of). The result is shown in Flgure /. 15 (the definition
of parent of has been oxmtted) '

Gender —,I has
(code

{'m7 T3

|

' father of _

Vx[l\/an x = 3y(x has gender y &y has gendercode 'm']
Vx[Woman X = Jy(x has_gender y & y has_gendercode 1

'Figure 745 The o.ptirniz.ed veision of the previous schema

-Unlike the earlier schema, which produces two ONF tables, th1s schema
generates only oue table v&hen passed to the ONF. alcromhm (see F1crure 7. 16)

sec. 7.2 Conceptual schema optfmization C : _ 717

- The subtype constraints are espeéially awkward to specify graphically on the
relational schema: we use subtype arrows annotated by a restncnon condition.
Thexr coding in SQL is however straxchtforward

. {‘m' ‘f'}
| —— asjit ————
“Person (name, gender, father OP, mother QP)

as, it ——J_l
gender ="m"
——~——gender ='f ——

Figure 7.16 ” The relational schema obtained from Figure 7.15

In this section, optimization of conceptual schemas has been illustrated -
with some simple examplcs; For further discussion of related design
- optimization issues within the relational model, see Amikam (1985) and
Diederich - & Milton (1988). While the theory developed here can be
immediately apphed by the schema deswner in a freehand form, it is clearly
desirable that for large scale schemas such ‘optimization should be automated
"as much as p0551ble '

We behcvc that such a conceptual optimizer should be interactive, if
oonly to draw upon the ability of humans to provide meaningful names for new
predicates and to check for synonymous object types. Humans also have a role
to play in deciding when to consciously strengthen or weaken a schema by
adding--or'deleting definitional context. Ideally, the system should input a
~ conceptual schema and expectcd query/update pattern, and output an optimized
- conceptual schema as well as the corresponding relational schema in both
shortened and coded form for the desired relational DBMS.

The task of providing -automated support for soph1st1cated conceptual
optimization of large global schemas is non-trivial. The next sectlon

.1nd1cates some of the problems which need to be addressed and provides some " -

creneral oru1dance for selecting transformations on a global schema.

sec. 7.3 Optimizing gIobaI conceptual schemas : , 7-18

7.3 Optimizing global eonceptual schemas

In the previous chapter, several schema equivalence and implication theorems

were specified. These allow a conceptual schema to be replaced by another
~which is contextually equi'valent or at Jeast an aeceptable substitute. In
_ the latter case, the substitute schema may be. stronger or weaker than the
onrrmal but since the theoréms identify any differences the resulting
mfonnuuon gain or loss is under the conscious centrol of the de51gner'
- In the previous section, various examples were given of how such theorems
“may be used to optimize a conceptual schema for 1rnp1ementat10n in arelational -
DBMS. However, because there are so many theorems and ch01ces the deswner
who wishz< to opt:rnlze a large global conceptual schema in this way may need
some -assistance “(preferably -automated), at least in the way of general
guidelines. In this section we briefly indicate some of the relevant issues,
~and su ggest some guidelines for optimizing a global schema. A comprehensive |
treatment of this topic is beyond the scope of this thesis.
There are three factors which need to be considered when optmnzmc a
' eonceptual sche_rna. the target system; the guery pattern; and the update
-pattern. The targer system is the DBMS in which the schema must ultimately be
implemented. This might be a relational system (e.g. DB2), an object-oriented
. system (e.g. Iris), an extended relational system (e.g. PostGres), or even a
_ h1erarchlc or nétwork database system. , -
To 111ustrate the influence of the target system on optimi7a*ion
. decisions, recali that in NIAM all conceptual fact types are elementary; in .

- particular, sets are not directly supported as conceptual -objects. ,For

-example onaCs we might specify sub_]ect enrolments in terms of the mn fact
type Student enrolied in Subject, but not as ar: n:/ fact type Student enrolled
in SUbJECLSet Suppose we also record the n:] fact type Student born on Date.
When mapping to arelational system, because enrolment ism:n, enrolment and '
' b.zthdate facts must go in separate tables. In a system in which set valued
fields are support=d however, both kinds of fact may go into the- same table.
While extending NIAM to support the design of non-relational systems
- (especially object-oriented ‘systems) is a interesting research topic,'in this
thesis our treatment of optimization assumes the target éystem is relational.
The next optimization factor is the query 'pattern. By this we mean the
 kinds of questions which the sysiemn will be e}:pected to answer, t'ogether with
statistical information about ‘the expeeted frequency and priority of these
questions. Minimally, one needs an estimate of which queries will be issued

most often, and which queries (if any) require shorter response times.

sec. 7.3 Optimizing global conceptual schemas ' : _7-19

Finally, the wupdate partern must be considered, i.e. the kinds,
frequencies and priorities of the expected insertions, deletions and

‘modifications to the database tables. ' , '

Althoﬁ‘ﬂh space issues are still of some importance, storage technology
advances contmue to offer dramatic increases in primary and secondary Imemory
at cheaper pnces Hence we focus our optimization efforts largely on
reducing the time required for fespondincr to the expected query/update
pattern, especially the frequem/pnonty quenes/updates (these are sometimes
called the "focussed transactions™). '

“The continuing trend towards distributed database systems has added
con51derab1y to the complex1ty of design optimization (e.g. by introducing
factors such as communication times for message passing between sites, and

-local versus global query,/upd_ate patterns). However; for this thesis our
optirhization guidelines assume we are dealing with a sinﬂle sysfem

For a given conceptual schema one can always produce a query/update :
pattern for which the schema is a]ready optlmal For example, map the CS to
its ONF tables. Then let each query takeé the form "select * from T", where T
is one of these tables, and let each update be performed on just one of the
tables (although the dpdafe aspect might be complicated by join const:faints).

With practical applications however, much more complex queries are
typically requifed. The queﬁes which tend to consume ‘the most time are those

. that involve joins or subqueries. Usually, it is more important to have rap1d

response times for queries than for updates. Hence our default Gatumzatmn
-strategy aims to minimize the number of focussed queues which involve joins
 or subqueries. . '

' We first consider joins or subquenes on a single table. For example

consider the temary Degree in Year cost Money which records yearly fees for
full-time enrolment in degrees. Assume such fees muét be ‘TvCCOI'dCd for the 3
- years '1988-90. This entails that we must know the fees for all three years =
before we can populate the fact type. Let the correspondmo relational table

be Fl‘fee(deoree year, fee). Queries such as "How much has the PhD fee

 increased from 1988 through 19907" or "What was the average PhD fee for the

period 1988-907" require operations between diﬁ‘ercﬁr rows of the base table. -
For' example, the first query may be formulated in SQL using a self-join thus:

select Afee - B.fee

from ' FTfee A, FTfee B

where A. vear = 1980 and A.degree = 'PhD'
-and B.year = 1988 and B.degree = 'PhD’

e v oane NP IIAIl TN MINAUL A IR O TITTIAD /=20

Notice. that the conceptual schema for this ternary fits the pattern of
. the right-hand alternative in theorem EBTI’, as qualified by corollary EBT3.
In such cases, if the focussed queries require a join or subquery, we suggest

that the ternary by replaced by binaries (sé¢ Iefi-hand option of EBTL’)

; _With the present example, this yields the binaries: Degree in 1988 cost Money;,

'Degree in 1989 cost Money; Degree in 1990 cost Money. Let the ONF alﬁbﬂthm
cronp these into the table: FTfee(decrée fee88, feeS9 fee90). The queries
may now be spcmﬁed in-terms of operations on a smcle row. For exarnple the
fee increase 1s obtalned from:

select fee90 fee8g
from FTfee
where degree = 'PhD'

“Apart from being easier to formulate, the foccussed queries are now faster
te execute since the requmzment for a join or subquery has -been.eliminated.
This exarnple ‘was trivial and clear-cut. Unfortunately, life is not always so
simple. Applying EBT1’ to this case requires that a finite enumeration be
specified for Year. In our example, Year was restricted to the period 1988-
90. First note that in a global schema, Year might play lots of other roles,
so this r_esm’ctibn to 1988-90 might not hold globally. However, so long as

“the years: that play in the Fee predicate are restricted to this period (and'
hence form a subtype FeeYear) we may still transform the ternary into three
binaries (though the object type B in the right-hand alternative of EBT1’ must
now be treated as a subtype .. note that the other. enumerated type
transformations may be treated similarly). ‘

- A more significant issue is the cardinality of the ‘enumerated type.
Suppose We must record fees for the period. 1951. 1990 To apply the same
transformarion theorer in this case would ccncrate 40 b1nanes and lead to a
relational table w1th 41 colurnns FTfee (deoree fecSl ., fee90). Instead

~of a very deep table we now have a very wide table. We suggest that once 2 '

specified upper cardinality limit (5, say) is exceeded, the defoult guidc_‘z::',ﬁ:

"~for transforming to binaries should be overridden. Certainly a large number -

of binaries would 'rnake' the CS awkward to view‘ for humans, and a wide
relational table would also be awkward to view (lots of horizontal scrolling)
and more difficulr to print (except in lands~ape mode). I—Iowevef if one can
live with such viewing disadvantages, one might still choose to transfonn to
binaries to speed up the focussed queries. _

Amnother related issue is the swability of the enumeration constraint.

Suppose we need to store the enrolment fees for each year from some specified

sec. 7.3 Optimizing global conceptual schemas 7-21

start year to the current year. For cxample_, in 1991 we might need to store

the fees for 1988-91, in 1992 the fees for 1988-92, and so on. Alternatively,

we might be interested in. storing fees only for the latest 3-year period. In
our formalization of NIAM we ignored all problems associated with schema

evolution. But in practice one may need to address such problems.

If all years in the currently designated period must have fees recorded
then both the ternary and binary solutions are subject to_s&:héfna. evolution.
A Howcvcf; the changcg_-'é the ternary solution are less drastic (the enumeration

constraint and frequency constraint are changed) than for the binary solui'on
(a new binary fact type is introduced). In terms of the relational -tables,
the binary solution requires either that an extra column be added each year or
that optional columns be added initially in anticipation). If it is not
'necessary that fees be recorded for all years in a given period, then clearly
the ternary solution is stable but the binary solution is not: this advantage
may be enough to outweigh concerns about poor performance with focussed

queries. These considerations are summarized in the following guideline.

Table Width Guideline (TWG):

if a subschema matches the form of the binary-ternary equivalence theorem' -
(EBT1 or EBTI’), the enumeration cardinality is small, and focussed
que'ries ‘on the ternary solution require comparisons between different
rows, then the binary solution should normally be chosen. -In other cases
the teinary solution may -or may not be preferable.

The previous guideline attempts to reduce the number of focussed queries
invelving joins or subqueries on the same table. However, the main potential
for optimization lies in minimizing the number of focussed queries which
require joins or subqueries on two or more tables. These kinds of queries
tend to be the slowest to execute.” To specify a.comprehensive i'rlininﬁzazion
algorithm is a major research problem in itself. In this thesis we content
. ourselves with providing some general guidelines to help reduce the number of
“such queries. We make no claims as to the completeness of our suggested

procedhfc. _ o ,

' Suppose we have a large global conceptual schema which we wish to
optimize in the sense of reducing the number of focussed queries invoh)ing
multi-table joins or subqucrieé. - Our basic aim is to reshape the schema so
that, when passed to the.ONF algorithm, it results in fewer tables so that,
wherever possible, focussed queries may now take pl'acc on single tables rather .

than multiple tables.

sec. /.3 Uptimizing global conceptual schemas 7-22

Here are some of the main questions we now need to address:

» Which subschemas are to be selected for optimization?

. For each subschema, which transformations should be applied?

c In what order should these trans_formationsbe performed? -

- In answering these _qucstibns we confine ourselves essentially to the
schema. cqliivalcncr: and implication thzorems discussed earlier in the thesis.
To answer the first ciuestion, recall that the ONF algorithm maps each fict
type with a composite key to a separate relational table '(With the usual
qualification for.cornposit‘cily defined objects). There are two main situations
with the po?éntial for rcdﬁcing the number of composite keys: (1) composite
keys which are compatible; (2) object types with both a simple and a binary

key anached. These situations are summarized in Figure 7.17. In case 1 the

composite keys may be binary or longer, but their corresponding object types

~must be compatible; being elementary, the predicates can have at most one

4

other role not included in the key. In case 2 the predicate with the

composite kKey must be either binary or ternary.

case 1: - caseZ2: _
< —_—— —_—

) ! AN -
C/\ . - | C'\ |

<

— 4 e
4

Figure 7.17 . Poténtial patterns for optimiza_tion
Hence we select candidate subschemas for optimization by searching the

global schema for one of these two patterns. In 'preparation for this search,
we first flatzen any nested fact types where the pair type plays only one role

-and this role is mandatory.

If a case 1 pattern is found we immediately apply the overlap algorithm -
to it (see section 7.2). If the pair types overlap at all, then they are
replaced by using a single pa‘r type, sO the number of composite keys has been

* reduced. Various examples of the overlap algorithm were cited earlier. . -

 If, in the process of camrying out the optimization, a fact type arises
that match~s the pattern of one of our splittability theorems then the split . -
designated by the theorem must take place. To illustrate this, as well as the

sec. 7.3 Optimizing global conceptual schemas C L ' 7-23

virtue of prehrmnary flattening, consider Figure 7.18 (which is based on an
example from Bernhard Thalhe1m) ' '

Figure 7.18 The constraints enable substantlal optlmlzatlon

. Because the role played by the objectified pair type is mandatory, the -
~ nested R-S part should be flattened to a ternary V(a,b,c). Because of the
subset constraints and UCs, theorem IFD2 shows that in V we have the FDs: ¢~

‘band ¢~ a So by IFD2 (or IU2) we have a ternary V(Q,g) which splits on ¢
into Vl(g,a) _and V,(c,b) with ‘an inter-predicate uniqueness cbnstrain_t between
a and b catering for the a,_b constraiht in V. Because of thé equality

~constraint between V1 and T, and between V,and U, Tand U .may be specified as

derived"predicates or simply deleted. This leaves'V1 and V, as the only

predicates needing to be stured, so the ONF algorithm results in V, and V,

‘being rece:sbined into V(_aﬁ,g).- So whereas before optimization the schema

- would have wenerated two tab1es with inter-table constraints, the optimi'zed'...
schema maps to a single table. ’

~ Retumning to the opt1m12at1on procedure for case 1, suppose that
flattening and the overlap algorithm have been applied where relevant, but
that- the pair types do not oﬁerlap’(ﬁrst subease of the overlap algorithm).

In this case, if the keys -span whole predicates then, since they are
cbmpatibl'e ahd mutually exclusive, they match the pattern of the left-hand
scherna in theorem EET4: we should now apply this theorem by introducing a

‘further enumerated ©w5ject type, transforming to. a single, longer fact type
This again has the desired effect of reducing the number of composite keys.

Once case 1 optimizations have been completed, we turn to case 2. Asit
stands, this schema pattern maps to two tables. Basically we search. for some
way {0 convert the binarw-kéyed Jact type into one'nr MO binaries. wlz'ich are
simply keyed on A. If this can be done, the resultmcy subschema maps to one
table keyed on this object type instead of the oncrmal two tables. We now

summarize ways in which this might be achieved.

sec. 7.3 Optimizing global conceptual schermas » 7-24

If the binary-keyed fact type is a binary then let the other object type
be B. We list two possibilities for transforming this case. If B has an
enumeration constraint of cardinality 2 then replace it with_an_object type of .
cardinality 3 including the "both" option, and replace the predicéte with one
simply keyed on A (asA discussed for Figure 6.20 -- this example may be
directly restated asa theorem).

' . Ifthe compositely keyed binary has a frequency constraint of 1;n on A’s
role then, unless n is unacc'eptably‘ large, trénsfor_m it into n exclusive
binaries simply keyed on A by using theorem ImFC1 or EFC1 |

Now consider case 2 where the cdmposit‘ely keyed fact ty'pevis a ternary.
Let the other object type involved in this key be B. We list two
- possibilities for transforming this case. If B has an enwmeration constraint
| of cardinality n then apply the relevant EBT theorem(s) to replace the ternary
with 7 hinaries simply keyed on A. '

If the temary has a frequency constraint of 1;n on A’s role then, 1f n
is small, transform it into n binaries simply keyed on A. This particular
-transformation was. not discussed earlier, but all if involves is a simple
extension of theorems ImFC1 and EFC1 from the binary to the ternary case.

This overall process is summarized by the fewer tables prloceduré' (FTP),
so called bccause it aims to reduce the number of relational tables obtained.
from the ONF map

Fewer Tables Procedure (FTP):

1 Flatten any nested fact. types where the pair.type -plays only one. role and’
‘ this role’is mandatory

2 Apply the. Qver‘lap algorithm to any pattern of compatible composite 'keys.

3 Use theorem EET4 to transform any case of whole ’predicates which form
" compatible, composite but exclusive keys to a'single longer predicate. -

4 For each case where an object type A’ has both a simple and binary key
~ attached, where the other role of the binary key is pléyed' by B:
if the fact type with the binary key is just a binary
then if B is constrained by {b,,b,} then apply thedrem of Fig. 6.20
else if A’s role with B has an FC of 1;n and n is small
then apply ImFC1 or EFCY
else { the bivnary-keyed fact type is a ternary }
if B i$ constrained by {bl,..,bn}
then apply relevant EBT theorem(s)
else if A’s role with B rias an. FC of 1;n and n is small
then apply térnary version of ImFC1 or EFC1

ST, .3 UpUINIZINY Yloudl cuncepuar Scremas: . ’ 7-25

We illustrate the use of FIP on one last example. Consider‘Figure 7.19,
which describes a UoD concerning postgraduate topics offered in the computer
- science department at the University of Queensland. When passed to the ONF

“algorithm this schema results in four tables.

' \
has —— Title
/

is in charge of has actual prerequisite

Lecturer
(initials) /-

Subject
(code)

————)
is co-lecturer of has preferred prerequisite

is scheduled for . o
{sem1,sem2yr}

Figure 7.19 This sub-optimal schema generates 4 ONF tables

Suppose a focussed Liuery for this application is: list all topics (code -
and title) ‘together with their chief-lecturers, co-lecturers, actual pre- .
requisites and preferred'prereauisites “With the ONE schema for Fi'crure' 7.19,
th1s query involves a join of 4 tables and hence will be slow to run.

Applymcr FTP to this schema results in two main changes. Step 3 of the
prbcedure transforms the two prerequisite fact types. into the ternary: 'Toplc
has SUbjé_ct as prerequistte with Statuscode {'a','p'}. Note that each topic .
must have an actual prerequisite: this feature is not captured by theorem EET4
and hence must be added in ternarizing; since no NIAM graphic exists to
express it on the ternary we add the 'ab'breviated textual constraint vx[Tx -

 3yz(Hxyz & z='2"). This underlines the following two advantages of one
- advantage of our earlier fdnnalizatipn: we know exactly ‘which features are
captured in applying a transformation theorem; additional features may be
treated orthogonally.

The second change to the schema results frorn applymg Step 4 of the
pmeedure. this replaces the colecturer binary by two binaries simply keyed on
Topic: Lecturer is colectureri of Topic; Lecturer is colecturer2 of Topic.
The optimized schema results in just two ONF tables, leading to much faster

xecution of focussed queries.

sec. 7.3 Optimizing global conceptual schemas 7-26

We recommend that the TWG guideline be used after the FTP procedure has

been completed. The optimization strategies presented in this section are by

no means comprehensive. We recommend the specification of more detailed
optimization strategies as a worthwhile research topic. A workbench to
provide automated support for schema optimization is currently in the planning
stage. Among other features, such a design tool should provide default
optirmizations, explain its strategies (including the possible advantages and -
-disadvantages of suggested changes), accept guidance from the designer on
information gain or loss as well as better identifiers, and allow the designer
to modify its optimization decisions and take a more active part in
controlling the Uansfofrnétions. '

8 Cbnclusion

8.1 Summary

This sec_tion summarizes what we believe 10 the inain achievements of this
thesis. The next section provides a suggested list of related topics for
future research. '

A prioritized summary of ten contributions was presented in section 1.2.
Rather than consider each of these individually, we group them under a few
general headings. . | | . ‘

The bulk of the xhesm has been concemed 1n one way or another, w1th
the formalzzatzon of information structures in NIAM. Building on' the
foundation of first order prédicate logic, we constructed a formal theory
general enough to capture all static aspects of NIAM conceptual schemas. To
our knowledge, this is the first time that a truly formal framework lias been
specified in which NIAM theorems may be rigorously stated and prox}cd. ”

This framework was used to clarify, refine and extend many different
areas in NIAM." In particular, we believe our axiomatization and semartics for
lexical, numeric and described objects has at last provided an adequate
account of definite descﬁptions within the database context, and that our use
of contextual definitions 1o provide inter-translatable conservative
extensions of alternative schemas has finally made sense of claims of
equivalence and implication in NIAM. Our treatment of derivadon rules has
clarified the connection between cdnceptual and implementan'o‘n concermns, and
our orthogonal - approach to formalizing schemas, including local/global

4aspectx 112.3 facilitated an mcrcmental modualar approach to schema design.

While we consider thlS work on theoretical foundations to be the miost
valuable general contnbuuor in the long wrm, of the thesis, many- new
results dcnvmG from this woik have been presented. These 1nc;1ude new
theorems on constraint implicatior, schema cquivalcnéc and schcrna

1mp11cat1on as well as new results on satisfiab 11ty and schema formation™

: ,rules

With regard to the 11:nplerner1tat10n of conceptual schemas in relational

.database systems, the ONF algorithm has been augmented with constramt

mapping. «nd procedures have been presented for optimizing the conceptu;al

-schema prior to executing this algorithm.

sec. 8.2 Topics for future research - 8-2

We hope to héve demonstrated within the thesis that NIAM, in the extended
form presenied here, provides a knowledge base design methodology that is
both intuitively simple' and nvorously grounded. Moreoyver. we_trust thar
Justlﬁcatlon has been prov1dcd for the following comment by Dr. E. F. Codd,
the founder of the relational model, who questioned a database product
_designer about support for - the existential quantifier, only to recclvc ‘the
reply, "I often get questions of a philosophical nature, but this is the first

time I’ve had a question pertaining to existential philosophy™:

I thought, "what is this data base field doing if the product
designers don’t know anything about predicate logic?" T feel
predicate logic is an-essential tool.

(Codd, quoted in' Rapaport 1988)

8.2 Topics for future research

In relation to the subject' matter of this thesis, the following research
' topics are suggested as worthy of future investigation. The suggested
~ implementation modules would complcment one another in a comprehensive

knowledge base design workbench.

1 Extend the formalization to include dynamic constraints (transition
constraints). Temporal logic provides one promisirig approach to this
area. ' o '

2 Identfy further cqhstraint patterns which are oniy_ - trivially
| satisfiable, and compile a more comprehensive list of conceptual schema

formation rules (see sec. 6.1)
3 Specify a comprehensive procedure for mergihg subschemas (sec. 6.1).

4 Develop furtler constraint implication theorems (sec. 6.2), incorporating
relevant existing ‘work from other methodolocles (e.g. functional

dcpenaency theory).

-5 Develop further useful theoréms cencerning equivalences and implications

between conceptual schemas (sec. 6.3).

sec. 8.2 Topics for future research 8-3

10

Implement a mapper for translating a conceptual schema into a relational
schema in various SQL systems, including Co‘mplete mapping of constraints =
(sec. 7.1). '

Develop further guidelines for optimizing conceptual schemas by

transformation prior ic the ONF-map (secs 7.2-3).

Implcr;iént a conceptual schema design workbench, capable of suppcrting

conceptual optimization.

Implement a computer aided environment for reasoning about conceptual
schemas (Appendix II).

Explore the connections between NIAM and other approaches, such as
object-oriented databases, ER modelling (Appendix III), dependency -
theory, and distributed databases.

- Appendices

Appendix I: The nature and purpose of formalization

‘As b’aékground, this appendix providés 2 brief overview of the formalization
process in- general: what it is'and why it should be performed. Since our
approdch is standard, this review is confined to a brief sketch of reicvant
ideas. Further details may be found in standard works, for example Hunter
(1977}, Burwise (ed. 1977), and Cliang and Keisler (1977).

A language is formal if and only if it can be defined without reference
to any interpretation of its formulas (whosé well-formedness is dcc'idable) A
Jormal system compnscs a formal lancruacre together with a deductive apparatus’
(for which the syntactic well-formedness of proofs is demdable) Within the -
geneiwl theory of semiotic (study of signs), formal systems can be t_rcatvd

' pﬁrely‘as a matter of syntax (signs as u'ninterpretcd objects) rather than
semantics ("meanings" and Valueé of .igns) or pragmatics (intended use of
signs).v Syntax includes the definition of the formal langnage and proof |
theory. Before a formal system is applied to a real world problem,
| appropriate ssmantics nsed t~ he specified; thls brings in rnodel theory (thc
study of 1nterpretar1ons of forinal lancruaccs)

A formal language may be identified with its set of wffs (weil formed
formules* it has a vocab:lary and a set a formation rules. The vocabulary
cbmpﬁées a set of primitive symbols, and optionally a set of defined symbols
together with the relevant definitions. The jormation rules specify how wifs -
may be constructed from the primitive symbols. Programming and logic

- provide many examp'iesof ‘ormal languages.

Semantics may be formal or informal. An 1nformat1on syc:ern deals only
with {orr"" semantics: defined symbols have an intension provided by their
deﬁnitions, but the "meaning"’ of prirhitive -predicates is given by their

_possible extensions (relations over formal'object's). “In contrast, humans may

: 1ntcrpret formal objects in terms of the real world and may attach SUbJCCtIVC

intensiroa! meaning to primitives. _

Proof theory is the study of formal systems without reference. to
interpretatidn. It deals with the deductive apparétus of formal systems. A
deductive apparatus 1s a set of axioms and/or inference Tules. Axioms or
premices are simply starting foimulas rather than "ob. Hus truths” (ind=ed the
notion of truth is e»rside the scope of proof theory). Inference rules (or

transformation rules) licence the derivation of some formulas from others.

Appendix | The nature and purpose of formalization A-2

Proof theory is a purely syntactic game. A proof is a finite sequence of
formulas each of which is either an axiom or an immediate consequence of

. earlier formulas by application of the inference rulc,s.‘.,,A_,zlleaffmJSjitth.,

an axiom, or a formula for which a proof exists. In contrast to our usage,

some authors don’t count axioms as theorems (e.g. Hughes & Cresswell 1968, p.

16). ‘

An axiomatic system has axioms, and usually a very few inference rules.
A natural acauction or axiomless system has no axioms but does have inference
rules (usually several). Axiomatic Systems are usually better for proofs of
metatheorems (proofs about the system). For simple systems (e.g.

.pr0poé,itiona1 logic) deduction systems are usually better for proofs in the

system. For complex systems such as set theory and NIAM knowledge bases,
proofs-in are facilitated by axioms =nd several inference rules.

Model theory or semantics deals with intexpretatiohs of formal languages.
Its concepts include truth, semantic consequence and logical validity; A
model of a set of formulas is an interpretation in which every formula in the
set'is true. A countermodel is an interpretation in which at least one
formula is false. A formula is a logical truth iff it is true in all
interpretations. An argument is a set of propositions one of which (the

‘conclusion) is claimed to follow from the others (the prciniscs). An argument

is valid iff in cach intcxprctation’ in which the premises are true, so is the
conclusion. .

Metatheory is tre thecry of formal languages, formal systems and their
interprer~+~1s. - The object language is the language that is the objecf of
study. The metalanguage is the language used to describe the"object language.
In Austraha Ehglish is used as the metalanguage to study a foreign object

language, e.g. JapaneseT When studying a formal object language, the

- metalanguage is often English supplérnented by logic and set theory notations.

A theorem in or of a formal system is a formula with a (syntactic) proof,

and has no meaning as such. Informally, a metatheorem (theorem about a

~ formal system) is a true, meaningful statement about the system, expressed in

the metalanguage.

Given a set of formulae in the ochcr language, the metatheory examines .
such features as consistency, soundness, completeness, decidability and
independence. A system S is simply consistent iff for no formula A of S are

‘botl. A and the negation of A theorems of S. A system S is absolwf’ly

consistent iff some formula >f S is not a throrem of S

Appendix | The nature and purpose of formalization B : A-3

A system S is sound iff all its theorems are logical truths of S. An
inference rule A,..A,/:C is sound iff in every interpretation in which A,.A,
are true so is C' A system S is (weakly) complete iff all its logical truths
" are theorems of S. We ignore other notions of completeness. A system S is

decidable iff there is an algorlthm to decide for each formula of 'S ‘whether it
1s a theorem of S. An axiom A of a system S is independent of the other
axioms iff it cannot be proved from § - A (ie. § with A removed). A non-
1ndependent amom is redundant. Redundancy simplifies proois in the system '
but complicates proofs about the system '

Two systems are 1som0rph1c iff they have the same underlying structure.
Theorems in one system can then be mapped onto theorems of the other, e.g. the
isomorphism between propositional calculus and set theory enables mapping
between p Vv~p =Fand A N A'={ }. Mapping between formal systems cften
leads to practical efficiencies. For instance the numeric expression (42.><
‘93)* can be mapped via the logarithm transformation onto the logarithmic
system as (log 42 + log 93) x 3: this expression can be easily evaluated and

- the result mapped back via the antilog tIansfon'nanon to provide the solution
in the original system. ' '

* Mapping between informal and formal systerns can also have advantages.
Roughly speaking, formal logic and pure mathematics involve the syntactic
development' of abstract systems,l physical Seiencé aims ‘to- discover
isornorphisms between various aspects of physical reality and abstract systems,
and applied logic/mathcmatics pragmatically uses the -isomorphisms 50
discoyefvead, For example, consider Euclidean geometry: formally we .may test
its axioms for consistency and derive theorems; but whether our space-time
continuum is Euclidean is a question for physics, not mathematics.

Formaiization can help to explain and clarify -difficult aspects of ‘the
real world, sm plify the solution .of real world problems, guard against
‘10"10&1 errors, and enable new consequences to be deduced. Such formalization
is necessary if even some aspects of the onﬂmal tasLs from the real world -

are to be computerized.

A-4

Appendix II: Sample proofs

In this appendix, proofs are by deduction trees. This method combines trees
(semantic tableaux) with natural deduction. Background on trees and natural
deduction is given in Halpin & Girle (1981). Standard inference rules may be
used to make deductions, and therzby shorten the proof and reduce branching.
Branching can be entirely eliminated by use of conditional proof if desired.
Formulae are ticked (v) when replaced by equivalent formulae. The
justification column on the right annotates the proof; n.umbers here cite lines
used for this step; other abbreviarions :adicate the formul~ status, or rules
used, e.g. : '

P Premise . W Universal Instantiation

C Conclusion : S] Substitutivity of Identicals
NC Negated Conciusion ' DN Double Negation ‘
'PC Propositional Calculus tree rule AA Affirm the Antecerient

QN Quantifier Negation . {i.e. Modus Ponens)

El Existential lnstantiatjon AB Affirm one side. of a Biconditional

| Théorem: The following.CS (Figure 6.1, p. 6-2) is not strongly satisfiable

2 CI
teaches
Lecturer C2
\ (surname) :
earns

Proof 1: _

This follows since the Teachcs'lpredifcate cannot be consistently populated, as
shown below. We abbreviate this‘ predicate as T, and franslate only the
relevant part of the CS. |

3Ixy xXTy ‘ | k Populate T

v o1
2 Vxyz(xTy &xTz-y =2z) C2
8 xy[xTy - 3z(xTz &y # z)] 'C1 conjunct .
4 &Tb 1 |
5 aTb-3z(aTz&b+#z) . 3UL
v 6 3z(aTz&b#1z) - - 4,5 AA
vV 7 &lc&b#c ' 6 El
g o7 ' : : ~ 7PC
9 b#z. : . : 7 PC
10 aTb&aTc-b==n ' S-SV
11 aTb & aTc _ : o 4,8 conj
12 =cC ' , 10,11 AA

X ‘ 4 9,12

Appendix Il Sample proots ' , A-5

Theorem:If A plays r, and r, and r, is mandatory thch a. subset
cons_n'aint from r, to r, is implied (p. 6-9, theorem IS1), i.e.

h

o
Q/< B

F)

- Strictly speaking, there is a result of this form for each choice of A,
r, and r,. The proof-scheme may be expressed in agonizing, low level detail
by selecting arbitrary predicates R and S (not necessarily distinct) of -
arities n and m, arbitrary role positions i and j, and expanding "x plays r,"
and "x plays r," as "x € R.i" and "x € S,", which expand as '.’Eixl..x'n(Rxl..xn
& x = xp" and "3x.x,(Rx,.X,, & x = xm)"." However, since x is free in
these latter formulae, and our human insight reveals that.the intemal -
sttucture of these formulae is imrelevant to the proof; we symbolize
membership in the role populations simply as: | |

P X =X plays r,
Px = X plays £

We symbolize only the relevant aspects of the given CS in premises 1 and
2, and show that denying the subset constraint leads to a contradiction. The
argnment is just a simple AAA syllogism (i.e. subsethood is transitive).

" Proof 2:
1 Wx(Px - AX) - P {from TPN (typing constraint) }
2 WXAX-PX P { TMR2 (r, is mandatory for A) }
v 3 ~WX(Px-PX NC { negate subset constraint }
Vo4 3x~(Px-PX) - 3QN '
V5 ~Pa-Pa : 4E
6 Pa 5PC-
7. ~Pa < 5PC
8 Pa-Aa- - 1ul
9 Aa | | 8,6 AA
10 Aa-Pa - 2ul
11 Pa 10,9 AA

X _ - 7,11

YL CHIIA 1T QIO JIT IS

:g;»
[5)Y

" Theorem:If R is a binary with fnutually exclusive roles then R is asymfnetric

: Pro‘of 3:

(. 6-13), ie.

as*

. The exclusion constraint is translated by TXC1 as Vx~(x € R.1&xe€ R.2), and

the € notation is then replaced (see sec. 42) to yield the premise. This is

our first example with branching (see step 8).

\
N o O0bs O -

©

- Theorem:

Proof 4 ‘

B o) I 35 B - N T o B

‘Vy~aRy.

Vx~(3y xRy & 3y yRx) -

~Vxy(xRy =+ ~yRX)
Axy~(xRy =+ ~yRX)
~(@aRb - ~bRa)
aRb
bRa
~(Ely’aRy & Jy yRa)

——
~3y aR
Vy~yria
~aRb ~bRa

X X

~3Jy yRa

P{dix}
NC{~dfas}
2QN -

3 El

4 PC

4 PC,DN

1 Ul

7 PC
8 QN

gul

5,10; 6,10

If R is an asymmetric binaxy then R 1s irreﬂe_xivé (p. 6-12).

Vxy(xRy = ~yRx)

~X~XRX

~3x xRx.

aRa -

aRa - ~aRa
~aRa

X

as
R I B |

P{dfas}
NC { ~dfir}
2 QN,DN
3El.

1 Ul

54 AA .

4,6

PPRISTIUIR I QQHTINIG [T UVIS ' ,A—Z

Theorem: The subschemas CS1 and CS2, when extended by D1 and D2
respectively, are logically equivalent (p. 6-29, Fig. 6.18).

M Cs2:
n . {‘m','f'}
X — Y
o : — S/
F ’
D1: ¥xy(xHy = Mx & y="m' V Fx & y="f) D2: WxMx=xH'm"
: ' Wx(Fx = xH'f")

Proof 5:

The subschemas translate into KL as the following specific axioms, togzther
with the KS axioms. From theorem CC#, we know that 'm' # 'f".

CSt: Wx(Pv -~ Described x) CS2:. Vx(Px~ Des~rhed X)

Vx{Mx = Px) Vxy[xHy » Px & (y="'m' V y="{"]
Vx(Ex = PX) Vxyz(xHy % xHz = y=2)

Vx~IMx & FX)

We prove the result by showing each representation implies the other (the

- common axiom that P is described is safely omitted). A proof window fnay be
opened at any time 1o consider a subproblem (e.g. the proof of one conjunct in
the global conclusion). .For a more general windowing technique for
interactive proof editors, see Robinson & Staples (1988).

Notice the way branching is reduced by resolving truth values. ‘For a set
of such resolution rules see Halpin & Girle (1981, pp. 141- ’7) each such rule‘”
may be specified as a derived rule of inference. _

For efficiency reasons, we have modified the branching rule for
implication to ag:ee with the approach of Staples. So a node of the form a »
B branches to ~e; «,B rather than to ~a; B. ‘

The last window of the full proof includes an example of the modified

“implication branching rule (Part 2 of proof:/:C4, ,line'_s' 11,12 right branCh):
this avoids having to prove closure for ~aHb on the right branch. '

Appendix Il Sample proofs

Part1:CSI & DI = CS2 & D2

1 VYXx(Mx = Px) P
2 Vx(Fx— Px) P
3 Vx~(ix & Fx) P
4 Yxy(xHy = Mx & y="m' V Fx & y=""} P
[Yxy[xHy = Px & (y='m' V y="] /i CA
Vxyz(xHy & xHz ~ y=7) : C2
Vx(Mx = xH'm'") C3
WX (Fx = xH'f") , C4
' [C
v 5 ~Yxy[xHy - Px & (y='m' V y="f")] NC1.
v 6 Ixy~[xHy =+ Px & (y="m' V y="")] 5 QN
v 7 ~[aHb -+ Pa & (b="m' V b='f")] 6 El
8 aHb) 7 PC
v 9 ~[Pa&(b='m'V b="f"] 7PC
v 10 aHb=Ma &b='m' V Fa & b='f' 4 Ul
v 11 Ma&b="m'V Fa & b="f' 8,10 AB
12 Ma- Pa 1Ul
13 Fa- Pa 2 Ul
[: L .
14 ~Pa v ~(='m"'V b="f") 9PC
15 P b#'m" 14b PC
16 . ' ~ b#'f' 14b PC
17 Ma - Fa . Ma Fa 11 PC
18 b='m' b='f b='m' b='f" 11 PC
19. Pa Pa X X 12,17;18,17;15,18;16,18
X X - 14,19
[:C2
v 5 ~V¥xyz(xHy & xHz = y=z) . NC2
1V 6 3xyz~(xHy & xHz = y=2) 5QN
v 7 ~(aHb & aHc -+ b=¢) 6 El
8 aHb ‘ 7PC
9 aHc 7 PC
10 "b#c . 7 PC
v 11 aHb=Ma &b="m'V Fa&b="f" 4 Ul
v 12 aHc=Ma&c='m'V Fa&c='f'- 4 Ul
v 13 Ma &b='m'V Fa & b="f' .8,11 AB
v 14 Ma&ec='m'V Fa&e='f' 9,12 AB
Vv 15 ~(Ma & Fa) 3ul
.16 l\}la I|=a 13 PC
17. b='m' b="f' 13 PC
18 ~Fa .~Ma -15,16
19 Ma Fa Ma Fa 14 PC
20 c='m'" ¢='f' c='m' c='f 14 PC -
21 b=c X X b=c¢c 17,20;18,19;18,19;17,20
' 10,21

Appendix Il Sample proofs

/: C3
v 5 ~Vx(Mx=xH'm') NC3
v 6 Tx~(Mx=xH'm") 5 QN
7 ~(Ma=aH'm 4 6EI T
v 8 aH'm'=Ma&'m'='m'V Fa&'m'="f 4Ul
v ¢ aHm'=Ma&TV Fa&F 8 R=,CC#
V10 eH'm'=MaVF 9 1d,CF
v 11 aH'm' = Ma 10 Id
12 Ma=aH'm' 11 Com
X 7,12
/: C4
v 5 ~Yx(Fx=xH'T) NC4 -
v 6 Tx~(Fx=xH'T") 5QN
7 ~(Fa=aH't) 6 El
v 8 ab'f'=Ma&'i'='m' V Fa & = 4 Ul
v 9 aH"f' =Ma&FVFa&T 8 CC#,R=
v 10 aH'f' =F V Fa ' 9 CF,ld
V11 aH'f' =Fa 10 Id
12 Fa=aH't" 11 Com
X 7,12
O
Part2: CS2 & D2 = CS1 & D1
1 Vxy[xHy = Px & (y="'m" V y="f)] P
2 Vxyz{xHy & xHz = y=z) - P
3 Wx{Mx=xH'm" P
4 Vx(Fx=xH'T) P
/: Vx(Mx = Px) . I C1
Vx(Fx = Px) C2
Vx~(Mx & Fx) C3
Uxy(xHy =Mx &y="m' V Fx & y="f") C4
) : /. C1
v 5 ~Vx(Mx = Px) NC1
v 6 Ix~(Mx = Px; 5 QN
v 7 ~(Ma= Pa) 6El
8 Ma 7PC
9 ~Pa . 7 PC
v 10 Ma=aH'm' 3 Ul
11 aH'in’ _ _ v .8,10 AB .
v 12 aH'm'=+Pa& (m'='m' V 'm'='f") 1 Ul
v 13 aH'm'=-Pa& (T VF) 9 R=,CC# -
v 14 aH'm'-Pa&T. 10 1d.
15 aH'm' - Pa 11 1d
16 Pa 11,15 AA
X 9,16 -

Appendix Il Sarmple proofs

/. C2
V5 ~Vx(Fx - PX) ' NC2
v 6 Ix~(Fx—= Px) 5 QN
v 7 ~(Fa-Pa) 6 El
8 Fa 7PC
9 ~Pa 7 PC
v 10 Fa=aH'f' 4 Ul
11 aH'f’ o 8,10 AB
v 12 aH'f'» Pa & ('f'="m' V 'f'='f") 1 Ul
v 13 aH'f'»Pa& (FVT) 9 CC#,R=
V14 aH'f' > Pa& T 10 id
15 aH'f'-» Pa 11 id
16. Pa 11,15 AA
X 9,16
/. C3
v 5 ~Vx~(Mx & FX) - NC3
v 6 3Ix(Mx % Fx) ‘5 QN,DN
v 7 Ma&Fa 6 El
8 ‘Ma 7 PC
9 Fa 7PC
v 10 Ma=aH'm' 3 Ul
v 11 Fa=aH'f' 4 Ul
12 aH'm’ 8,10 AB
13 aH'f' 8,11 AB
14 aH'm' & aH'f' = 'm'='f' 2Ul
15 aH'm' & aH'f’ i 12,13 Conj
16 'm'="'f' 14,15 AA
X 16,CC#
/. Ca
vV 5 ~Vxy(xHy =Mx &y='m"'V Fx&y="{) NC4
v 6 Ixy~(xHy=Mx&y='m'V Fx &y="'f") 5QN
v 7 ~(aHb=Ma &b="m'V Fa & b="f") 6 El
8 Ma=aH'm' ' " 3UuUl
9 Fa=aH'f 44!
v 10 aHb— Pa & (b='r'n‘ V b='f") 1 Ul
11 ~ale a:-lb . _ 10 PC
12 : v Pa& (b='m'V b='{) 10-PC
13 vMa&b='m' V Fa&b="f' Pa 7,11; 12
14 ¢ —— v b="m'V b='f 12 N
15 Ma - Fa v~(Ma&b='m'V Fa&b='f") 13;7,11
16 b='m’ ' b= ~Ma&b='m) 13; 15
17 ~aH'm' ~aH'f' ~(Fa & b="f") - 11,16; 15
18 aH'm' aH'f = ——] 8,9,15
19 X ’ X b="m' b="f' 17,18; 14
20 ' aH'm' aH't 11,19
- 21 Ma Fa 8,9,20
22 Ma & b='m' * Fa&b='f" 21,19
X - X 16,17,22

O

~
e

A-11

Appendix IIE: Entity—Rélationship modelling

In this thesis we have formalized and extended the information state component
of the fact-oriented modelling approach known as NIAM (Nijssen’s Information
Analysis Method). In particular, equivalence and implication between
conceptual schemas has been rigerously examined, and guidelines have been

given for optimizing a conceptual schema by applying transformation theorems

‘before mapping it to a relational schema. Despite the strengths of NIAM, in

current practice the most popular data modelling formalism is Enrity-
Relationship moduelling (ER). Some of the benefits of NIAM over ER have been
cited elsewhere (e.g. Nijssen, Duke & Twine 1988). In this appendix we
briefly compare NIAM with ER, with a view o making our results more
accessible to users of ER. |

ER was first proposcd by Chen (1976) Ba51ca11y, ER views the real world

~ag consisting of entities which have attrzbutes (propemes, e.g. gender) and -

participate in relationchips. The domain of discourse also includes values.
A value is basically a typed Cconstant (e.s.” ‘Codd’:sumame, ‘5’:integef,
‘male’-'crendér); at the implérnentation level, valve typing is typically .
implicit. An entity 1s a thing with independent existence, and a relationship
1s an association amoncrst entities.

In Chen’s original proposal relanonshlps may have attributes but do not
participate in relationships. -Chen proposed a dizgram notation in wlich
entity types and binary relationship types were depicted as named boxes and
diamonds respectively. Line segments connecting boxes to diamonds were
labelled "1", "n" or "m" to indicate whether the relat10nsh1p type was 1:1,

I:n,n:1 or m:n. Attributes and value sets were not shown on the a;aoram but

~were listed separately.

Chen’s original versmn of ER is grossly lacking in expresmbﬂlty It

cannot specify mandatory roles, frequencv cosstraints, subtypmg, exclusion

" constraints, subsct constaints, equality constraints, some uniqueness

constraint patrerns (e.g. overlapping and intra-predicate UCs), and so on.

-Since most of our formal results rely on the capacity to express such

features, most of our conceptual schema ansformations cannot be rigorously
mapped inio original ER. Of course, informally the ER designer may use some

of the basic ideas, but there is ne formal way of controlling information loss

with this approach. |

. Appendix lll Entity-Relationship modelling : . A-12

Many researchers, including Chen, have since extended ER to enable such
- features to be captured. The resulting models are -usually called EER
(Extended ER) ‘Some of these models come very close to the expressibility of
NIAM. Unfortunately, there are dozens of different EER models. These differ
not only in the features that they support but in the diagram notation used to.
picture such features.
For example, the relationship diamond might be replaced with polygons
(depending on the arity of the predicate) or simply deleted in favour of
adding role names to parts of the relationship line. Attributes might be
included as names attached by lines to their entity types; sometimes attribute
“names are enclosed in ellipses. A 1:n fact type might be specified with a
"crow’s foot" symbol at one end. Mandatory and optional roles might be .
distinguished by solid and broken lines, or by double and single lines, or by |
shading a "role" within the relationship polygon. Moreover, the same symbo] R

| may be used with differeht meanings depending on the EER model (e. g.adouble
Iihe might be used to denote a multi-valued- attribute instead of a mandatory |
role). , : '

Of the many EER notations with which we are familiar, none appears to be
as simple or intuitive as the NIAM notation. In general, the more complex the
constraint situation, the more awkward the EER dlagrarn becomes in comparison

"w1th the NIAM ‘diagram. For example the typical EER notations make it
difficult if not impossible to graph1cally specify cases such as disjunctive
mandatory roles (inclusive and exclusive), subset constraints between
compatible pair types, and complex subtype graphs. Part of the problem with
most EER fiqtzitibns is their failure to focus on the roles in a relationship -
type. This not only makes it hard to-express constraints on roles but also
makes it extremely awkward to populate schema diagrarhs with fact instances |
for validation purposes. | . , ' |

Because there is no staneard EER notation, and EER notations are
typically awkward, we later suggest a version of our own which is closer to
NIAM. So long as the conceptual features are supported in some way, the -
designer should be able to traaslate his or her pamcula: EER notation into

ours. If the concept is not supported in the designer’s EER graphical
notation, then the concept will vhave to be specified textually (e.g. by a
‘logical formula). . ‘ .

Let us suppose'that we have an EER notation that is as expressive as the
NIAM notation. To use the theorems and optimization guidelines developed in -
this thesis, one needs to provide an algorithm for_tranélating between the two

Appendix lIl Entity-Relationship modelling : A-13

notations. It is beyond the scope of this thesis to specify such an algorithm
in detail. However, we do sketch the essential aspects. |

Once one has a sufficiently expressive EER model, it is clear that there
is'more similarity than difference between NIAM and EER. Entity types, vilue
sets, and relationship types of EER basically correspond to entity types,
label types and 'fclatiorrship types. in NIAM. Our specialized treatment of
definite descriptions, string types and number types can be easily applied to
EER. There is only one fundamental differencé in the conceptﬁal basis of the
two formalisms: the notion of arrributes. - The attribute concept is explicitly
emphasizcd iﬁ EER, but is'no_t required in NIAM (though it is definable in
terms of NIAM’s primitives). We now illustrate how attributes in EER can be
-translated into the NIAM framework.

The EER notion of an attribute may be summarized as follows.‘An attribute
is simple if it cannot be decomposed into simpler attributes, else it is
composite. For example, Gender is a siniplc attribute but Birthdate is
composite if we wish to individually access Birthyear, Birthmonth, and
Birthday. An attribute is _single-valued if it maps each member of its‘entity"
type onto at most one value (e.g. Gender is a funcrion from Person to the
valye ser {‘male’:gender, ‘female’:gender}). A value set is also called a
domain. A multi-valued attribute maps each member of its entity type onto at
most one set of values. For example, LanguagesSpoken' is a function from
Person to the power set of languages (where each language is treated us a
value, e.g. ‘Japanese’:language). | ‘ .
‘ Each entity type must have an attribute (simple or cbmposité) as its,
primary identifier. Each other attribute is a descriptor. If an attribute
can be derived from others by means of a derivation rule it is said to be |
a’_erz'ved (e.g. assuming all grades are recorded, GradeAverage may be derived
- from Grade). Different atmibutes may be defined over the same domain. For
cxample Birthdate and Enrolmentdate may be defined over the domcun Date
Salary and Tax may be defined over the domain Money.

For non-attribute aspects of our EER diagram notation we use the NIAM
notation. For example, ertity types are shown as named ellipses (not boxes)
and relationship types are shown as named box-sequences (not diamonds), and
the NIAM constraint notations are used. ‘ '

We now specify a graphic notation for displaying attributes on a diagr?m.
'. Each attribute has a (local) name. However, the local names "name”, "code"
and "nr" may be used for ditferent atibutes, so the entity type name is
prepended to the local attribute name to provide a qualified attribute ndm_e.

| [T

A
N

Appendix Il Entity-Relationship modelling o A-14

Attributes which are primary identifiers are shown as NIAM reference

modes, i.e. in parentheses below the entity type name. Unlike our NIAM

diagrams, we do not underline numerically based reference modes. The
domains of attributes are typically listed in a separate table: for domains
that-are subsets of String or Real, we use the NIAM notation. We chose
nurnbers‘instea_d of strings for employee numbers (e.g. we might want to specify
simple tules for generating new employee numbers).

Descriptors have their (local) names written at the end of a line segmen
connected to their entity ellipse. If a descriptor is a 1:1 attribute, it is
underlined. If & descriptor is mandatory, a mandatory role dot is added to
the point where it is connected to it entity type. Some other constraints

(e.g. exclusion constraints between roles played by the entity type) iy be

added. If a descriptor is derived it is preceded by an asterisk, and the

derivation tule is written separately. Composite attributes have their
components listed in parentheses, and multi-valued attributes are delimited by

braces. See Figure 1.

car office

7
gender \q?ﬁacturer_____ _research lab
: (emp#) g
{ degree } ' name (surname, initials)
‘ C *itle / :
* if *PhD’ in degree(Lecturer) ' attribute domain.
then title(Lecturer) = ‘Dr’ . -
else if gender(Lecturer) = ' .. emp# ~ [dddd]
then title(Lecturer) = ‘Ms’ car <dddaaa>:car
else title(Lrsturer) = *Mr - gender {'m’,’f'}:gender
' office <d4>:room
research lab <d4>:room
surname <a20>
initials’ . <a3>
degree <a7>.degree

Figure 1 Come attributes of Lecturer *

The translation of Figure 1 into NIAM is shown in Figure 2. As an
alternative, an object type LecturerName could have been introduced,
identified 'by surname and initials. The main thing to note is that with
single-valued atmributes the role played by Lecturer has a'.simple uniqueness
constraint, but this is not true for the multivalued attribute. Note that the

‘predicate names can be generated by prepending "has” to the atribute names

(recall our shortened predicate name rule for "has™). _

Appendix lll Entity-Relationship modelling S _ A-15

The object type names at the far-end of the predicate may be assigned the
- domain names. Of course, the designer would often override the generated

predicate names with better ones (e. g. "was awarded" instead of "has degrec”).
In this example we have used meaningful names for the reference modes (e.g.
‘reg#’): these need to be supplied by the designer (if desired, default names

could be automatically generated by appending " id" to thé domain naﬁle, e.g.

"car_id").
<dddaaa> : . ‘ has dfﬁc;e
hash . . . A . \ <d4>
A) : / Room .
— {roomi#)
has ;
Lecturer :
has research lab
. (emp#) :
‘ R Sl aiill o
T .7 N\
has /ldddd] \ . has | —-(Sur_name/‘<a20> _
; AN
- —_— // :'— \\
has has = lnltials"<a3>

* ' \ !
. ~..”

* derivation rule as in Fig. 1

Figure 2 Figure 1 translated inio NIAM

A quick glance at Figures 1 and 2 indicates that if ‘one wishes to view
the attributes of Lecturer without the domain détaﬂs, then the EER diagram at
the top of Figure 1 mighf _bc preferred for this p‘uzpos',e since ‘it is more
compact. Indeed, it is sometimes argued that NIAM’s notation is less suitable)
than .EER’s because a NIAM diagrarn p;icks all..the information onto one figure,
swamping the human viewer with too much detail.

There is no doubt that in vvforkiﬁg with éonccptual schcm.a's thefe_ is aneed
to sﬁpport information hiding in various ways. An automated design tool
should enable the designer to choose how much of the conceptual schema he or
she wishes to view at 2 particular time. If it is desired to view just a
single entity type and 1ts attributes withou: domain dgtail, then' we have no
objection to a view such as that at the top of Figure 1 being used: this could
be acceptéd within NIAM simply as an incomplete abbreviation of the relevant
fact types. Of course, other kinds of information hiding should also be
supported. For example; the designer may wish to choose which fact types to
view (e.g. show a local subset of the entity ‘types and their fact types;
excluding "attributes"), which kinds of constraint to éee_, and so on:

Appendix /Il Entity-Relationship modelling ; " A1B

Having said this, we emphasize that there are many occasions in which it
is extremely advantageous to be able to see all the relevant constraints at
once. In such situations NIAM diagrams can make it easier to spot

important constraints, and to suggest further optimization. In contrast,
unless managed very carefully by the designer, EER diagrams can be dangerous
because they hide relevant information. For example, consider Figure 3 (this

is a simpler version of a problem: discussed in section 7.3).

is in charge of - has actual prerequisite
— ——ely
Lecturer N Toprc / 5
(initials) / - 12 A\ (codeg) :
is co-lecturer of _ has preferred prerequisite

Figure 3 A NIAM schema in neéd'df thimization

Usmcr EER,a deswner rm“h* come up with a schema dlaoram equivalent to

that shown in Figure 4.

{ actual prerequisite }

" Topic <
code) { preferred prereqursxte }.

‘Figure 4 Arr EER schema missing imponant ‘constraints .

lecturer_in_charge

{.colecturer} —

Clearly, Figure 4 does not capture the following constraints which are

R ot o et s £

captured in Figure 3: there are at most two colecturers for a given top1c a
lecturer in charc’e of a topic cannot be a colecturer of the same topic; a
subject which is an actual prerequisite for a topic cannot be a preferred
prerequisite for that topic. -Apart from 4being important constraints to
enforce, the frequency constraint and the right-hand exc‘lusion_’constraint
enable the NIAM schema 1o be optimized so that only twc tables (instead of
~ four) are generated when the schema 1s passed to the ONF algorithm (see

7y section 7.3). ' ' '
The moral here for EER 1s to avoid use of mulu-valued attributes When a
frequency constraint is 1nv01ved or .when there is more than one such
attribute based on the same domain. With this ULHdCh’l , one can produce an
EER diagram for this example using four relatlonshlp typeé; and if the NIAM

yon

Appendix Ill Entity-Relationship modelling ' » . ‘ A-17

notation for predicates and constraints is adopted we get the same diagram as
the earlier NIAM diavram - This can now. be optimized in the same way.
It can be seen from this example (and many others) that one problem with
EER is that important connections might go unnoticed by nofhghr-é;éﬁinc the‘
domains of attrlbutes on the diagram. Another related problem with EER is
that there are too many choices as to how to capture an aspect of the UoD. A
classic example here is the 1:1 head-of-department fact type: is Head an
*. attribute of Department; Department an atmribute of Lecturer, or do we have a |
relationship type instead? | ’ ,
' Moreover, in EER we may need to revise our schema when some aspect
chosen as an attribute (e.g. { subjects } as an attribute of Student) must be
Tecast as a relationship (e.g. we may later decide 10 record the ciedi point
- value of each subject). NIAM avoids the need for such agonizing choices and
~ revision, by proving a simple, direct and uniform treatment of all fact types.
In summary, EER-style diag"rams can be useful for providing external views
which hide unwaﬁted 'detail; but in order to use such diagrams safely one needs
-10 be sure that the hidden detail is actually irrelevant to the task at hand.
" Just what aspects are relevant might not always be obvious. If one wishes to
deal rigorously with the notions of schema equivalence and implication then
information about domains and constraints needs to be made .expliciﬁ. NIAM |
provides a convenient way of displaying this on a single diagram.

B-1

Bibliography

During preparation - of this thesis, the extensive literaturé on relational
- database design has been kept under review; but works of this nature which are

‘not directly relevant to this thesis have not beer cited here.

' _vAmikam, A. 1985, *On the Automatic Generation 'of Optimal Internal Schemata’,
Inform. Systems, vol. 10, no. 1, Pergamon, pp. 37-45. '

Andrews, J. 1987, Trilogy User's Manual Complete Logic Systems Vancouver,

‘ Canada :

Asimov, 1. 1986, Foundanon and Earth, Collins, London.

Australian Government Pubhshmcr Service 1988, Stle Manual for Authors,

~Editors and Printers, 4th ed., AGPS Press, Canberra.

Barwise, I. . (ed.) 1977, Handbook of Mathematical Logic, North-Holland

- Publishing Co., Amsterdam. :

Bledsoe, W.W. & Loveland, D.W. (eds) 1984, Automared Theorem Proving: Afrer 23_
* Years, American Mathematical Soc1ety, Providence.

Beeri, C. 1980 ’On the Membership Problem for Functional and Multivalued

Dependencies in Relational Databases’, ACM TODS, vol 5, no. 3, pp. 241-

259. | - . . -

Beeri, C. & Ki'fer, M. 1986, An Integrated- Approach to Logical Design of
Relational DAtabaae Schemes’, ACM TODS, vol. 11, no. 2, pp. 134-158.

Brachman R.J. 1988, *The Basics of Knowledge Rep*esentatlon and Reasoning’
|AT&T Tech. Journal, vol. 67, no. 1, pp. 7-24.

v Bradley, R & Swartz, N. 1979, Possible Worlds, Basil Blackwell, Oxford.

Bry, F. & Manthey, R. 1986, ’Checking Consistency of Database Constraints: a
Logical Basis’,. Proc. Twelfth International Conf. on Very Large Daia
Bases VLDB, Kyoto, pp. 13- 20

Bubenk,, JA. o 1986, *Informarion System Methodolocles - A Research View’,

' Information’ Systems Design Methodologies: Improving the Practice, eds
T.W. Olle, I1.G. Sol & A.A. Verrijn-Stuart, North-Holland, Amsterdam.

Casanova, M.A. & Tucherman, L. 1988, “Enforcing Inclus1on Dependencxes and

. Referential Integrity’, Proc. of the Fourteenth Conf. on Ve:y Large Dara
" Bases, VL.DE, Los Angeles, pp. 38-48. ‘

‘Chamberhn D.D., Astrahan, M.M., Eswaran, .K.P., Griffiths, P.P., Lorde, K.A.,
Mehl, I.W ., Relsner, P. & Wade, B.W. 1976, *SEQUEL 2 A Unified Approach

Bibliography- _ T B-2

to Data Deﬁhition, Manipulation and Control’, IBM J. Res. Develop., Nov.
1976, pp. 560-75.
Chang, C.C. & Keisler, H.J. 1977, Model Theory, 2nd_edn, North-Holland
Publishing Co., Amsterdam.)
Chen; P.P. 1976, ’The Entity-Relationship Model - Toward a Unified View of
Data’, ACM Transactions on Database Systems, vol. 1, no. 1, pp. 9-36.
Chen, P.P. & Dogac, A. 1983, ’Entity-Relationship Model in the ANSI/SPARC
| Framework’, Entity-Relationship Approach to Information Modelling and
- Analysis, ed. P.P. Chen, Elsevier Science Publishers B.V., North Holland.
Codd,; E.F. 1970, A Relational Model of Data for Large Shared Data Banks’,
_ Communications of the ACM, vol. 13, no. 6, pp. 377-87.
Date, CJ. 1986a, An Introduction to Database Systems, vol. 1, 4th edn,
| Addison-Wesley, Reading MA. . -
Date, CJ. 1986b, Relational Database: Selected Writings, Addison-Wesley,
Reading MA. pp. 269-310. o
Date, C.J. 1987, A Guide o The SQL Standard, Addlson-Wcslcy, Rcadmg MA.
D’Am, A. & Sacca, D. 1984, *Equivalence and Mapping of Database Schemes’,
Proceedings of the 10th International Conference on Very Large Data
" Rases, VLDB, Singapore, pp. 187-95.
Debenham, J.K. 1985, "Knowledge Base Design’, The Australian Computer Journal,
vol. 17, no. 1, pp. 42-8. | |
Diederich, J. & Milton, J. 1988, 'New Methods and Fast Algorithims for Database
-Normalization’, ACM Transactions on Database Systems, vol. 13, no. 3, pp.
. 339365 '_ - |
Falkenberg, ED.” 1976, ’Concepts for Information Modelling’, Modelling in
Data Base Management Systems, ed. G.M. Nijssen, North-Holland, Amsterdam.
Falkenberg, E.D. 1986, Data Bases and Information Sysrems I: Lecture Notes,
University of Nijmegen, The Netherlands. , _
Falkenberg, E.D. 1198¢, "Deterministic Entity Relationship Modelling’,
' d'scussmn paper for FRISCO workshop.
Gallalre, H., Minker, J. & Nicolas, J.-M. 1984 ‘Logic. and Databases: A
Deductive Apgroach’, ACM Computing Sarveys, vol. 16, no. 2.
Girle, R.A., Halpin, T.A., Miller, CM. & Williams, G.H. 1978, Inductive -and
‘ Practical Reasomng, Rotecoge, Brisbane, pp. 149-57 - .
' Gottlob G. & Zicar, R. 1988 "Closed World Databases Opened Through Null
Values’, Proc. of the Fourteenth Conf. on Very Large Dara Bases, VLDB,
Los Anoeles pp. 50-61.
Haack, S. 1978 thlosophy of Logics, Cambndce Un1ver51ty Press, London.

Bibliography B-5

Halpin, T.A. & Girle, R.A. 1981, Deductive Logic, 2nd edn, Logiqpress,
Brisbane.
Halpm T.A. 1986a, ’Conceptual Schemata and Predlcatc Logic’, Proceedmgs of

the First Australian AI Congress, Melbourne.
Halpm T.A. 1986b, 'Logic Diagrams and Query Formulatlon in' SQL’; Technical
Report 77, Dcpt of Computer Science, University of Qld.
- Halpin, T.A. 1987, ’Information Design and IPT’, Compuzers in the Curriculum:
Proc. of 1987 CEGQ Conference, Computer Educ. Group of Qld, Brisbane.
Halpin, T.A. 1988a, CS112 Lecture Notes Dept of Cornputer Science, Un1vcrs1ty
of Queensland, Brisbane. ' o

Halpin, T.A. 1988b; ’Information Systems Design’, Technology ana' Autonomy
Proc. of 1988 CEGQ Conference, Corrputer Educ. Group of Qld, anb.:u,,
pp. 16-21.

- Halpin, T.A. 1988, ’Conccptual Schema Transformations’, Dept of Computer
Science, University of Quccnsland Brisbane. - |

Halpin, T.A. 1988d, CS113 Lecture Notes, Dept of Cornputcr Science, University
of Qu;cnsland, Brisbane. :

-Halpin, T.A. 1989, *Venn Diagrams and SQL Qu_en'cs’, The Australian Compuzer
Journal, vol. 21, no. 1, pp. 27-32.

Hughes, G.E. & Cresswell, M.J. 1968, An Introduczzon to Modal Logic, Methuen,
‘London. ,

Hunter, G. 1971, Metalogic: An Introduction to the Metat!zeory of standard
First-Order Logic, Macfnillan, London. |

ISO 1982, Concepts -and Terminology for the Conceptual Schema and the
Information Base, ed. 1.J. van Griethuysen, ISO TC97/SC5/WG?3, Eindhoven.

Jardinie, D.A. & Reuber, A.R. 1984, ’Information Semantics and the Conceptual
Schema’, Informanon Systems vol. 9, no. 2 pp. 147-56.

. Jardine, D.A. & van Griethuysen, J.J. 1987, A logic-based 1nf0rmat10n
‘modelling language’, Dara and Knowledge Engineering, vol. 2, North-

. Holland, pp. 59-81. |

Kent, W. 1978, Data and Reality, North-Holland, Amsterdam.

Kent, W. 1982 Choices in Practical Data Design’, Proc. of the Eigth Int.
Conf. on Very Large Data Bases, VLDB, pp. 165-180. |

Kent, W. 1986, "The Realities of Data: Basic Properties of Data Pccon51dcred’
Datrabase Semantics, eds T.B. Steel Ir & R.A. Mcersman, Eiseviers Science
Publishers B.V., North Holland. S |

Kobayashi, -1. 1984, ’'Validating Database. Updates’, Inform. Systems, voil‘. 9,
no. 1, Pergamon‘ Press, pp. 1-17.

Bibliography ' o ' B-4

Kobayashi, I. 1986, ’Losslessness and semantic correctness of database schema
' 'transforrnation' another look. at schema equivalence’, Inform. Systems,
‘ vol. 11, no. 1, Pergamon Press, pp. 41-59 '
Leung, CMR. & Nijssen, G.M. 1987, "From a NIAM Conceptual Schema’ into the
- Optimal SQL Relational Database Schema’, Australian Computer Journal,
vol. 19, no. 2, pp. 69-75.
Leung,. C.MR. 1988, 'On Design and Implementation of a Fifth Generation
Information System’, PhD thesié, Dept of Computer Science, University of

Queensland.

Levesque, H.J. 1984, A Fundamental Tradeoff in Knowledge Representauon and
Reasoning’, Proc. CSCSI-84, London, Ontano, 1984, pp. 141-152

Lindsay, PA. 1988, A survey of mechanical support for formal reasoning’,
Software Engineering Journal, Jan. 1988, pp. 3-27. '

Loux M.J. (ed.) 1979, The Possible and the Actual, Cornell Un1vers1ty Press.
Ithaca.

Lundberg, B. 1983, ’On Correctness of Information Models’, Inform. Systems;
vol. 8. no. 2, Pergamon Press, pp. 87-93. ' o

Luk, W.S. & Kloster, S. 1986, *ELFS: English language From SQL’, ACM
Transa"nons on Database Systems, vol. 11, no. 4, pp. 447-472.

Maier, D. 1983, The Theory of Relational Databases Computer Science PI'CSS' |
Potomac, Md. :

Mark, L. 1987, *The Bmary Relat1onsh1p Model - 10th Anruversary Pror VIM—
47 EMDA Conf., Minneapolis, Nov. 1987. _

McGrath, G.M. 1987, °The Transition to Fifth Generation technolovy “Conceptual
~.Schema Implementatlon The Australian Computer Journal, vol. 19 no. 1, - ' .,
‘Feb. 1987. o

Meersman, R.A. 1981, "RIDL: A Query System as Support for Informauon
Analysis’, ECODO, vol. 32, September 1981. ' .

- Meersman, R.A. 1988, "The Future of Relational Database Deswn , Proc. Oracle

. User Conf., Paris. v

- Meyer, J., Weigand, H. & W1enn ga, R. 1988, ’Spec1fy1n° Dynamic and Deontrc ,

' - Integrity Constraints’, Rapport IR-175, Vrije Unlver51te1t Amsterdam. ’

Morgenstern, M. . 1984, ’Constraint Equ_atlons Declarative Expressmn of
Constraints with Automatic. Enforcernerit Proc. of the Tenth Int. Conf on.
Very Large Data Bases, VLDB, Singapore, pp. 291-300.

'Motro A. 1986, ’Completeness Information and Its Application to Query

' Processing’, Proc. of the Twelfzh Int Conf. on Very Large Dara Bases,
VLDB, Kyoto pp. 170-178. '

VA

~ NH89: see entry for Nijssen & Halpin 1989.

Bibliography ’ _ | B-5

Navathe, S.B., Sashidhar, T. & Elmasri, R. 1984, °Relationship Merging in
Schema Integration’, Proc. of the Tenth Int. Conf. on Very Large Data
Bases, Singapore, pp. 78-90.

Nijssen, GM. & Falkenberg, E.D. 1983, Design of Conceptual Schemata and Data
Bases, Lecture notes, Dcpt -of Computcr Sc1encc University of Qnecnsland

(106 pp.).

" Nijssen, G.M. 1985, ’Qn Expeﬁence with Large Scale Teaching and Use of Faot-

based Conceptual Schemas in Industry and University’, Database Semantics:-
Proc. IFIP Conf. on Database Semantics, eds R. Meersman’ & T. Steel, North
‘Holland Publishing Co., Amsterdam. -

Nijssen, G.M., Duke, D.J. and Twine, S.M. (1988) ‘The Enity-Relationship
Model Considered Harmful, Proc 61h Symposzum on Empzrlcal Foundations of
Information and Software Sciences, Atlanta, Gcor01a

 Nijssen, GM., Gillner, R, Halpin, T.A. Mansfield, T, Sargent, M. &

Willmore, R. 198§, ’Thc General Architecture for Information Systems -
Hlustrativo example: Inventory Conwol System - (Predicate Logic)’,
Working paper for the IFIP WG 8.1 Tzsk Group FRISCO, Dept of Computer
Science, University of Queensland. ' : '

I\ujssen G.M. & Halpin, T.A. 1989, Conceptual Schema and Rezatzonal Database
" Design, Prentice Hall, Sydney.

Olle, T.W., Hagelstein, J.,, Macdonald, LG., Rolland, C., Sol, HG., Van
‘Assche, FIM. & Verijn-Stuart, A.A. - 1988, Information Systems
M. ethodologies-AF. ramework for Una’ersrana’mg, Addlson—Wesley, Wokin gham,
England. ' ~

Osborn, S.L. & Heaven, T.E. 1986, *The Design of a Relational Database System
with Abstract Data Types for Domains’, A_C‘M Transactions -on Database
Systems, vol. 11, no. 3, pp. 357-73. | |

“Rapaport M. 1988, °Dr E.F. Codd: The relatlonal model and beyond’ Database

Programming and Design, Feb. 1988. _
Reeves, S. 1987, ’Semanuc Tableaux as a framework for Automated Theorem
Proving’, AISB87, Edinburgh. ' o ' »
Reiter, R. 1984, 'Towards a Logical Reconstruction of Relational Database
Theory’, On Conceptual Modelling, eds M.L. Brodie, J. Mylopoulas & J.W.
Schmidt, Springer-Verlag, New York, pp. 191-233. ‘
Rennie, MK. & Girle, R.A. 1973, Logic: Theory and Practice, University of
" Queensland Press, Brisbane. |

Bibliography . ' - B-6

Robinson, P. & Staples, J. 1988, A Logic Architecture for Computer Aidcd‘
Reasoning’, Austral. Comp. Sci.Communications, vol. 10, pp. 215-224. -

Rybinski, H. 1987, ’On First-Order Logic Databases’, ACM_Transactions on
Database Systems, vol. 12, no. 3, pp. 325-49. X

.Sadﬁ, F. 1987, 'Multi-relation Dependencies’, Inform. Systems, vol. 12, no.
2, Pergamon, pp. 145-9. | '

Shoval, P. 1985, 'Essential Information Structure Diagrams and Database Schema
Design’, Inform. Systems, vol. 10, no. 4, Pérframon pp. 417-423.

Sowa, J.F. 1988, ’Knowledge Representation in Database, Expert Systems, and
Natural Language’, Proc. IFIP WG2.6/WG2. 8 Workzng Conf. on the Role of Al
in Database and Inf. Systems, eds C.H. Kung & R.A. Meersman, North
Holland, Amsterdam. |

Tarski. © A. 1949, ’Arithmetical classes and types of Boolean algebras’
(Preliminary report), Bull. Am. Math. Soc., vol. 55, no. 64. ,

- Teorey, T.J., Yang, D. & Fry, J.P. 1986, 'A Logical Design Methodology for
Relational Databases Using the Extended Entity-Relationship Model’, ACM
Computing Surveys, vol 18, no. 2, pp. 197-222. :

Vcrheljen G.M.A.. & Van Bekkum, J. 1982, 'NIAM: An Information Analy51s
Method’, Informarion Systems Design Methodologies: a comparative review,
eds T.W. Olle, HG Sol & A.A. Verijn-Stuart, IFIP, North Holland,
Amsterdam. . ‘

Vermeir, D. 1983, ’Semantic Hierarchies and Abstractions in ConCcptual

. Schemata’, Inform. Systems, vol. 8, no. 2, Pefgarnon Press, Dp. 117-24.

. Vermeir, D. & Nijssen, G.M. 1982, A Procedure to Define the Object Type
Structure of a Conceptual Schema’, Inform. Systems, vol. 7, no. 4, pp.

_ 329-336. _ ' '

Zaniolo, C. & Melkanoff, M.A. 1982, A Formal'Approach'to the Definition and

~ the Design of Conceptual'-Sch_emata for Database Systems’, ACM Transactions
on Database Systems, vol. 7, no. 1, pp. 24-59.

Index of main acronymns and theorems

main acronyms and abbreviations:

term pages explanation
CiP 3-7 Conceptual Information Processor
CS 3-5 Conceptual Schema
CSDP 2 ~ Conceptual Schema Design Procedure
- CWA 6-32 Closed World Assumption
ER Ap. il Entity-Relationship modelling
FC 4-10 Frequency Constraint
FD 6-23 Functional Dependency .
FTP 7-24 Fewer Tables Procedure
iff - fandonlyif . .
. K . 3-17 Axioms of KS (3-17/24; 5-11/18)
KB 3-4 Knowledge Base - '
KL . 313 Knowledge Language
KS 3-8 Knowledge System
LET 5-15 Lazy Entity Type
MR 4-8 - Mandatory Role
-NH89 - Text by Nijssen and Halpin (1989)
NIAM 2-1 Nijssen’s Information Analysis Method
. NRE 5-17 Numerically Reference Entity
OA 7-12 _ Overlap Algorithm '
- ONF = 72 . Optimal Normal Form -
OP 7-3 Optional column in relational table
QL= 3-10 ‘Quantification Language with identity
RFA 528 Read Fact Algorithm . ' L
saL = 74 Structured Query Language
- TWG 7-21 Table Width Guideline
UG 4-5 - Uniqueness Constraint

‘UaD 31 Universe of Discourse

constraint implication theorems:

narie page ' category
AT 6-12 Implied Asymmetry
- IE1 8-14 . Implied Exhaustion
‘IF1 6-25 implied Frequency
IFD1,2 ‘ 6-23,24 - _ Implied Functional Dependency
11,2 - 612 - Implied Irreflexivity -
IM1,2 . 6-10;11 Implied Mandatory role
IMR1,2 £1i4 Implied giohal Mandatory Role
151,2,3 6-9,10,25 Implied Subset
U1,2.3,4 622232426 implied Uniqueness
IX1,2,3 6-10,13,14 - Implied eXciusion

S 1#1,..8 €-17..21 Implied cardinality

Index of main acronyms and theorems

Conceptual schema equivalence and implication theorems

name page.

category

EBT1..3 6-36
EET1..5 6-36..42
EFC1..3 6-47,8
ENF1..3 6-48,9

EOA1,2 6-49
ERP 6-39-
ESC1..8 6-43..5
ESS1 6-51
EUB1 ' 635

- ‘ 6-32

ImFC1..3 6-46

ImOA1 G6-50

binary-ternary conversion
enumerated type
frequency constraint
nest/flatten

object type addition/deletion
role permutatioss
split/combine

‘subset constraint

unary-binary conversion

~ unclasstiied equivalence (see Fig. 6.20)

implied schema based on FC

implied schema based cn object type deletion

