
UML Data Models From An ORM Perspective:
Part 1
by Dr. Terry Halpin, BSc, DipEd, BA, MLitStud, PhD
Director of Database Strategy, Visio Corporation

This paper appeared in the April 1998 issue of the Journal of Conceptual Modeling
published by Information Conceptual Modeling, Inc. and is reproduced here by permission.

Although the Unified Modeling Language (UML) facilitates software modeling, its
object-oriented approach is arguably less than ideal for developing and validating
conceptual data models with domain experts. Object Role Modeling (ORM) is a fact-
oriented approach specifically designed to facilitate conceptual analysis and to
minimize the impact on change. Since ORM models can be used to derive UML class
diagrams, ORM offers benefits even to UML data modelers. This multi-part article
provides a comparative overview of both approaches.

Introduction

In our competitive and dynamic world, businesses require quality software systems
that meet current needs and are easily adapted. These requirements are best met by
modeling business rules at a very high level, where they can be easily validated with
clients, and then automatically transformed to the implementation level. The Unified
Modeling Language (UML) is becoming widely used for both database and software
modeling, and version 1.1 was adopted in November 1997 by the Object
Management Group (OMG) as a standard language for object-oriented analysis and
design [11, 12, 13]. Initially based on a combination of the Booch, OMT (Object
Modeling Technique) and OOSE (Object-Oriented Software Engineering) methods,
UML was refined and extended by a consortium of several companies, and is
undergoing minor revisions by the OMG Revision Task Force [10]. A simple
introduction to UML is contained in [4], and a thorough discussion of OMT for
database applications is given in [1], although its notation for multiplicity constraints
differs from the UML standard.

UML includes diagrams for use cases, static structures (class and object
diagrams), behavior (state-chart, activity, sequence and collaboration diagrams) and
implementation (component and deployment diagrams). For data modeling
purposes UML uses class diagrams, to which constraints in a textual language may
be added. Although class diagrams may include implementation detail (e.g.
navigation and visibility indicators), it is possible to use them for analysis by
omitting such detail. When used in this way, class diagrams essentially provide an
extended Entity Relationship (ER) notation.

UML Data Models From An ORM Perspective 2

UML's object-oriented approach facilitates the transition to object-oriented code,
but can make it awkward to capture and validate business rules with domain
experts. This problem can be remedied by using a fact-oriented approach where
communication takes place in simple sentences, and each sentence type can easily be
populated with multiple instances. Object Role Modeling (ORM) is a fact-oriented
approach that harmonizes well with UML, since both approaches provide direct
support for roles, n-ary associations and objectified associations. ORM pictures the
world simply in terms of objects (entities or values) that play roles (parts in
relationships). For example, you are now playing the role of reading, and this article
is playing the role of being read.

ORM originated in the mid-1970s as a semantic modeling method, one of the
early versions being NIAM (Natural language Information Analysis Method), and
has since been extensively revised by many researchers. Overviews of ORM may be
found in [6, 7] and a detailed treatment in [5]. Although all versions of ORM are
based on the same framework, minor variations do exist. This article focuses on the
most popular version of ORM as supported in modeling and query tools such as
Visio’s InfoModeler and ActiveQuery.

Since business requirements are subject to ongoing change, it is critical that the
underlying data model be crafted in a way that minimizes the impact of these
changes. The ORM framework is more stable under business changes than either OO
or ER models, and facilitates the remaining changes that need to be made. This
stability applies not only to the model itself, but also to conceptual queries based on
the model.

Although ORM can be used independently of other methods, it may also be used
in conjunction with them. To better exploit the benefits of UML, or ER for that
matter, ORM can be used for the conceptual analysis of business rules, and the
resulting ORM model can be easily transformed into a UML class diagram or ER
diagram.

This article summarizes the main data modeling constructs in both ORM and
UML, and discusses how they relate to one another. It aims to provide a basic
understanding of both approaches and to illustrate translation between their
notations. Along the way, some comparative advantages of ORM are noted.
However this is not to disparage UML, which does have some nice features. Overall,
UML provides a useful suite of notations for behavior and software modeling, and its
class diagram notation is better than most other ER notations for data modeling.
Visio Professional already provides basic support for several data and process
modeling notations, and the integration of InfoModeler technology will enable very
powerful support for both ORM and UML. So it will be possible to work in one or
more of your preferred notations (ORM, UML, ER) with automatic mapping to an
implementation in a variety of DBMSs. You could even do part of the model in ORM
and part in UML, and have these merged to a single model.

This article is divided into parts, only the first of which appears in this issue. Part
1 focuses on the basic fundamentals. To provide an evaluation framework, some

UML Data Models From An ORM Perspective 3

design criteria for modeling languages are first identified. We then discuss simple
cases of how objects are referenced, and how single-valued “attributes” and can be
captured in ORM and UML. From an ORM perspective, we confine our discussion of
constraints to simple uniqueness and mandatory role constraints. From a UML
perspective, we consider only attribute multiplicity and related textual constraints.
Later parts will discuss UML associations and more advanced features such as other
constraint types, aggregation, subtyping, derivation rules and queries.

Conceptual modeling language criteria

A modeling method comprises a language and also a procedure for using the
language to construct models. Written languages may be graphical (diagrams)
and/or textual. Conceptual models portray applications at a fundamental level,
using terms and concepts familiar to the application users. In contrast, logical and
physical models specify underlying database structures to be used for
implementation, and external models specify user interaction details (e.g. design of
screen forms and reports). The following criteria provide a useful basis for evaluating
conceptual modeling methods:

• Expressibility

• Clarity

• Semantic stability

• Semantic relevance

• Validation mechanisms

• Abstraction mechanisms

• Formal foundation

The expressibility of a language is a measure of what it can be used to say. Ideally,
a conceptual language should be able to model all conceptually relevant details about
the application domain. This is called the 100% Principle [9]. Object Role Modeling is
primarily a method for modeling and querying an information system at the
conceptual level, and for mapping between conceptual and logical levels. Although
various ORM extensions have been proposed for object-orientation and dynamic
modeling, the focus of ORM is on data modeling, since the data perspective is more
stable and it provides a formal foundation on which operations can be defined. In
this sense, UML is generally more expressive than standard ORM, since its use case,
behavior and implementation diagrams model aspects beyond static structures. Such
additional modeling capabilities of UML and ORM extensions are beyond the scope
of this article, which focuses on the conceptual data perspective. For this perspective,
ORM diagrams are graphically more expressive than UML class diagrams.

UML Data Models From An ORM Perspective 4

Moreover, ORM diagrams may be used in conjunction with the other UML diagrams,
and may even be transformed into UML class diagrams.

The clarity of a language is a measure of how easy it is to understand and use. To
begin with, the language should be unambiguous. Ideally, the meaning of diagrams
or textual expressions in the language should be intuitively obvious. At a minimum,
the language concepts and notations should be easily learnt and remembered.
Semantic stability is a measure of how well models or queries expressed in the
language retain their original intent in the face of changes to the application. The
more changes one is forced to make to a model or query to cope with an application
change, the less stable it is.

Semantic relevance requires that only conceptually relevant details need be
modeled. Any aspect irrelevant to the meaning (e.g. implementation choices,
machine efficiency) should be avoided. This is called the conceptualization principle
[9]. Validation mechanisms are ways in which domain experts can check whether the
model matches the application. For example, static features may be checked by
verbalization and multiple instantiation, and dynamic features may be checked by
simulation.

Abstraction mechanisms are ways in which unwanted details may be removed
from immediate consideration. This is especially important with large models. ORM
diagrams tend to be more detailed and take up more space than corresponding UML
models, so abstraction mechanisms are often used. Various mechanisms such as
modularization, refinement levels, feature toggles, layering, and object zoom can be
used to hide and show just that part of the model relevant to a user’s immediate
needs [3, 5]. With minor variations, these techniques can be applied to both ORM and
UML. ORM also includes an attribute abstraction procedure that can be adapted to
generate a UML or ER diagram as a view.

A formal foundation ensures models are unambiguous and executable (e.g. to
automate the storage, verification, transformation and simulation of models). One
particular benefit is to allow formal proofs of equivalence and implication between
alternative models for the same application [8]. Although ORM’s richer graphic
constraint notation provides a more complete diagrammatic treatment of schema
transformations, use of textual constraint languages can partly offset this advantage.
With respect to their data modeling constructs, both UML and ORM have an
adequate formal foundation.

Since the ORM and UML languages are roughly comparable with regard to
abstraction mechanisms and formal foundations, our comparison focuses on the
criteria of expressibility, clarity, stability, relevance and validation.

UML Data Models From An ORM Perspective 5

Object reference

For readers unfamiliar with ORM, some of its main concepts and notations are now
summarized. These concepts will also help explain related UML notations. ORM
classifies objects into entities (non-lexical objects) and values (lexical objects), and
requires each entity to be identified by a well defined reference scheme used by
humans to communicate about the entity. For example, employees might be
identified by employee numbers or social security numbers, and countries by ISO
country codes or country names. ORM uses “object”, “entity” and “value” to mean
“object instance”, “entity instance” and “value instance”, appending “type” for the
relevant set of all possible instances. For example, you are an instance of the entity
type Person. Entities might be referenced in different ways, and typically change
their state over time. Glossing over some subtle points, values are constants (e.g.
character strings and numbers) that basically denote themselves, so do not require a
reference scheme to be declared.

Figure 1(a) depicts explicitly a simple reference scheme in ORM. Object types
are shown as named ellipses, using solid lines for entity types (e.g. Employee) and
dashed lines for value types (e.g. EmpNr). Relationship types are depicted as a named
sequence of one or more roles, where each role appears as a box connected to the
object type that plays it. The number of roles is called the arity of the relationship
type. In ORM, relationships may be of any arity (1 = unary, 2 = binary, 3 = ternary, 4
= quaternary, 5 = quinary etc.). In base ORM, each relationship must be elementary
(i.e. it cannot be split into smaller relationships covering the same object types
without information loss). For this reason, arities above 5 are rare. In practice, about
80% of relationships are binary.

Figure 1: A simple reference scheme in ORM, shown (a) explicitly, (b) implicitly

Figure 1(a) depicts a binary relationship type. Read from left to right, we have:
Employee has EmpNr. Read backwards, we have: EmpNr is of Employee. The verb
phrases “has” and “is of” are predicate names. To enable navigation in any direction
around an ORM schema, each n-ary relationship (n > 0) may be given n predicate
names (one starting at each role), but it is a user preference as to how many of these
are simultaneously displayed.

Employee EmpNr Employee
(empNr)

101

102

has is of

101
102

(a) (b)

UML Data Models From An ORM Perspective 6

If an entity type has more than one candidate reference scheme, one of these may
be declared primary to assist verbalization of instances (and sometimes to reflect
actual business practice). If an entity type has only one candidate reference scheme,
this is the primary one. Relationship types used for primary reference are called
reference types. All other relationship types are called fact types. A primary reference
scheme for an entity type maps each instance of that type onto a unique, identifying
value (or a combination of values, as discussed in a later issue). In Figure 1(a), the
reference type has a sample population shown below it in a reference table (one column
for each role). Here icons are used to denote the real world employee entities.

To conserve space, simple reference schemes may be abbreviated by enclosing
the reference mode in parentheses below the entity type name (see Figure 1(b)), and an
object type’s reference table includes values but no icons. References verbalize as
existential sentences, e.g. “There is an Employee who has the EmpNr 101”. The
constraints in the reference scheme (see below) enable entity instances to be
referenced elsewhere by definite descriptions, e.g. “The Employee who has the
EmpNr 101”.

Reference modes indicate the mode or manner in which values refer to entities
(e.g. contrast Mass(kg) with Mass(lb)). The black dot where the left role connects to
Employee is a mandatory role constraint, indicating that role must be played by all
population instances of that type (verbalization: each employee has at least one
employee number). The arrow-tipped bar over the left role is a uniqueness constraint,
indicating that each instance in its associated population column appears there only
once (verbalization: each Employee has at most one EmpNr). The uniqueness
constraint on the right role indicates that each employee number refers to at most one
employee. Hence the reference type provides an injection (mandatory, 1:1-into
mapping) from Employee to EmpNr. The sample population clarifies the 1:1
property. A uniqueness constraint used for primary reference (e.g. the right-hand
constraint in Figure 1(a)) may be annotated with a “P”.

In a relational implementation, we might choose to use the primary reference
scheme to provide value-based identity, or instead use row-ids (system generated,
tuple identifiers). In an object-oriented implementation we might use oids (hidden,
system generated object identifiers). Such choices can be added later as annotations
to the model. For analysis and validation purposes however, we need to ensure that
humans have a way of identifying objects in their normal communication.

It is the responsibility of humans (not the system) to enforce constraints on
primary reference types. This is a conceptual, not an implementation issue. For
instance, choosing employee numbers as external identifiers (or oids as internal
identifiers) does not magically guarantee that each employee in the real world is
actually assigned only one employee number (or only one oid). Various measures
can be taken at the point of data entry to help ensure this, but even extreme measures
such as DNA checks still have some possibility of error. However, assuming that
humans do enforce the reference type constraints, the system may now be used to
enforce fact type constraints.

UML Data Models From An ORM Perspective 7

UML classifies instances into objects and data values. UML objects basically
correspond to ORM entities, but are assumed to be identified by oids. UML data
values basically correspond to ORM values: they are constants (e.g. character strings
or numbers) and hence require no oids to establish their identity. Entity types in
UML are called classes, and value types are called data types. Note that “object”
means “object instance”, not “object type”. A relationship instance in UML is called a
link, and a relationship type is called an association.

Because of reliance on oids, UML does not require entities to have a value-based
reference scheme. This can make it impossible to communicate naturally at the
instance level, and ignores the real world database application requirement that
humans have a verbal way of identifying objects. It is important therefore to include
value-based reference in any UML class diagram intended to capture all the
conceptual semantics about a class. Unfortunately, to do this we often need to
introduce non-standard extensions to the UML notation, as seen in the following
example.

Single-valued attributes

Like other ER notations, UML allows relationships to be modeled as attributes. For
instance, in Figure 2(b) the Employee class has eight attributes. Classes in UML are
depicted as a named rectangle, optionally including other compartments for
attributes and operations. For now, we ignore operations in our discussion. The
corresponding ORM diagram is shown in Figure 2(a). True to its name, ORM models
the world in terms of just objects and roles, and hence has only one data structure—
the relationship type. This is one of the fundamental differences between ORM and
UML (and ER for that matter). Wherever an attribute is used in UML, ORM uses a
relationship instead. As a consequence, ORM diagrams typically take up more room
than corresponding UML or ER diagrams, as Figure 2 illustrates. But this is a small
price to pay for the resulting benefits. Before discussing these advantages, let’s see
how to translate between the relevant notations.

UML Data Models From An ORM Perspective 8

Figure 2: ORM relationship types (a) depicted as attributes in UML (b)

The ORM model indicates that employees are identified by their employee
numbers. The top three mandatory role constraints indicate that every employee in
the database must have a name, title and sex. The other black dot where two roles
connect is a disjunctive mandatory role constraint, indicating that the disjunction of
these roles is mandatory (each employee has a social security number or passport
number, or both). Although each of these two roles is individually optional, at least
one of them must be played.

In UML, attributes are mandatory by default. In the ORM model, the unary
predicate “smokes” is optional (not everybody has to smoke). UML does not support
unary relationships, so it models this instead as the Boolean attribute “isSmoker”. In
UML the domain of any attribute may optionally be displayed after it (preceded by a
colon). In this example, we showed the domain only for the isSmoker attribute. By
default, InfoModeler takes a closed world approach to unaries, which agrees with the
isSmoker attribute being mandatory. The ORM model also indicates that Sex and
Country are identified by codes (rather than names, say). We could convey some of
this detail in the UML diagram by appending domain names. For example,
“Sexcode” and “Countrycode” could be appended after “sex: ” and “birthplace: ” to
provide syntactic domains.

In the ORM model it is optional whether we record birthplace, social security
number or passport number. This is captured in UML by appending [0..1] after the
attribute name (each employee has 0 or 1 birthplace, and 0 or 1 social security
number). This is an example of an attribute multiplicity constraint. UML does not have
a graphic notation for disjunctive mandatory roles, so this kind of constraint needs to
be expressed textually in an attached note (see bottom of Figure 2(b)). Such textual
constraints may be expressed informally, or in some formal language interpretable by

Employee
(empNr) smokes

EmpName

Title

Sex
(code)

Country
(code)

has

has

is of

was born in

Employee

empNr {P}
empName
title
sex
isSmoker: Boolean
birthplace [0..1]
socialSecNr [0..1] {U1}
passportNr [0..1] {U2}

(a) (b)

SocialSecNrhas

PassportNr

{Employee.socialSecNr is not null
 or
 Employee.passportNr is not null}

has

UML Data Models From An ORM Perspective 9

a tool. In the latter case, the constraint is placed in braces. Although UML provides
the Object Constraint Language (OCL) for this purpose, it does not mandate its use,
allowing users to pick their own language (even programming code). This of course
weakens the portability of the model. Moreover, the readability of the constraint is
typically poor compared with the ORM verbalization (each Employee has a
SocialSecNr or has a PassportNr).

The uniqueness constraints over the left-hand roles in the ORM model (including
the empnr reference scheme shown explicitly earlier) indicate that each employee has
at most one employee number, employee name, title, sex, country of birth, social
security number and passport number. Unary predicates have an implicit uniqueness
constraint; so each employee instantiates the smokes role at most once (for any given
state of the database). All these uniqueness constraints are implicitly are captured in
the UML model, where attributes are single-valued by default (multi-valued
attributes will be discussed in a later issue).

The uniqueness constraints on the right-hand roles (including the empnr
reference scheme) indicate that each employee number, social security number and
passport number refers to at most one employee. UML does not have a standard
graphic notation for these “attribute uniqueness constraints”. It suggests that boldface
could be used for this (or other purposes) as a tool extension ([12], p. 25), but clearly
this is not portable. We have chosen our own notation for this, appending textual
constraints in braces after the attribute names (P = primary identifier, U = unique,
with numbers appended if needed to disambiguate cases where the same U
constraint might apply to a combination of attributes). The use of “P” here does not
imply the model must be implemented in a relational database using value primary
keys; it merely indicates a primary identification scheme that may be used in human
communication.

Because UML does not provide standard graphic notations for such constraints,
and it leaves it up to the modeler whether such constraints are specified, it is perhaps
not surprising that many UML models one encounters in practice simply leave such
constraints out.

Now that we’ve seen how single-valued attributes are modeled in UML, let’s
briefly see why ORM refuses to use them in its base modeling. The main reasons may
be summarized thus:

• Attribute-free models are more stable

• Attribute-free queries are more stable

• Attribute-free models are easy to populate with multiple instances

• Attribute-free models facilitate verbalization in sentences

• Attribute-free models highlight connectedness through semantic domains

• Attribute-free models are simpler and more uniform

• Attribute-free models make it easier to specify constraints

UML Data Models From An ORM Perspective 10

• Attribute-free models avoid arbitrary modeling decisions

• Attribute-free models may be used to derive attribute views when desired

Let’s begin with semantic stability. ORM models and queries are inherently more
stable, because they are free of changes caused by attributes evolving into entities or
relationships, or vice versa. Consider the ORM fact type: Employee-was-born-in-
Country. In ER and OO approaches we might model this using a birthplace attribute
(e.g. Figure 2(b)). If we later decide to record the population of a country, then we
need to introduce Country as an entity type. In UML, the connection between
birthplace and Country is now unclear. Partly to clarify this connection, we would
probably reformulate our birthplace attribute as an association between Employee
and Country. This is a significant change to our model. Moreover, any object-based
queries or code that referenced the birthplace attribute would also need to be
reformulated.

Another reason for introducing a Country class is to enable a listing of countries
to be stored, identified by their country codes, without requiring all of these
countries to participate in a fact. To do this in ORM, we simply declare the Country
type to be independent (this is displayed by appending “!” to the type name). The
object type Country may be populated by a reference table that contains those
country codes of interest (e.g. ‘AU’ denotes Australia).

A typical counter-argument is this: “Good ER or OO modelers would declare
country as an object type in the first place, anticipating the need to later record
something about it, or to maintain a reference list; on the other hand, features such
the title and sex of a person clearly are things that will never have other properties,
and hence are best modeled as attributes”. This attempted rebuttal is flawed. In
general, you can’t be sure about what kinds of information you might want to record
later, or about how important some feature of your model will become. Even in the
title and sex case, a complete model should include a relationship type to indicate
which titles are restricted to which sex (e.g. “Mrs”, “Miss”, “Ms” and “Lady” apply
only to the female sex). In ORM this kind of constraint can be captured graphically as
a join-subset constraint between the relevant fact types (see later issue), or textually
as a constraint in a formal ORM language (e.g. if Person1 has a Title that is restricted
to Sex1 then Person1 is of Sex1). In contrast, attribute usage hinders expression of the
relevant restriction association (try expressing and populating this rule in UML).

An ORM model is essentially a connected network of object types and
relationship types. The object types are the semantic domains that glue things
together, and are always visible. This connectedness reveals relevant detail and
enables ORM models to be queried directly, using traversal through object types to
perform conceptual joins [2]. For example, to list the employees born in a country
with a population below ten million, we may formulate our query in ORM thus: list
each Employee who was born in a Country that has a Population < 10000000.

Avoiding attributes also leads to greater simplicity and uniformity. For example,
we don’t need notations to reformulate constraints on relationships into constraints

UML Data Models From An ORM Perspective 11

on attributes or between attributes and relationships (more about this in a later
issue). Another reason is to minimize arbitrary modeling choices (even experienced
modelers sometimes disagree about whether to model some feature as an attribute or
relationship).

ORM sentence types (and constraints) may be specified either textually or
graphically. Both are formal, and can be automatically transformed into the other. In
an ORM diagram, a predicate appears as a named, contiguous sequence of one or
more role boxes. Since these boxes are set out in a line, fact types may be
conveniently populated with fact tables holding multiple fact instances, one column
for each role. This allows all fact types and constraints to be validated by
verbalization as well as sample populations. Communication between modeler and
domain expert can thus take place in a familiar language, backed up by population
checks. The practical value of these validation checks is considerable, especially since
many clients find it much easier to work with instances rather than types. As
discussed in the next issue, attributes and UML-style associations make it harder to
populate models with multiple instances, and often lead to unnatural verbalization.
UML does provide object diagrams for discussing single instances, but these are of
little use for discussing populations with multiple instances.

For summary purposes, ORM includes algorithms for dynamically generating
ER-style diagrams as attribute-views [3, 5]. These algorithms assign different levels of
importance to object types depending on their current roles and constraints,
redisplaying minor fact types as attributes of the major object types. Modeling and
maintenance are iterative processes. The importance of a feature can change with
time as we discover more of the global model, and the application being modeled
itself changes. To promote semantic stability, ORM makes no commitment to relative
importance in its base models, instead supporting this dynamically through views.
Elementary facts are the fundamental conceptual units of information, are uniformly
represented as relationships, and how they are grouped into structures is not a
conceptual issue.

In short, you can have your cake and eat it too, by using ORM for analysis, and if
you want to work with UML class diagrams, you can use your ORM models to
derive them.

Later issues

We’ve barely scratched the surface of UML or ORM, but many of the fundamentals
have been introduced. In later issues, we’ll compare UML associations with ORM
predicates, fact tables with object diagrams, UML multiplicity constraints with ORM
mandatory and frequency (including uniqueness) constraints, UML association
classes with ORM nesting, and UML qualified associations with ORM co-referencing.
We’ll also discuss more advanced constraints, aggregation, subtyping, derivation
rules and queries.

UML Data Models From An ORM Perspective 12

References

1. Blaha, M. & Premerlani, W. 1998, Object-Oriented Modeling and Design for Database
Applications, Prentice Hall, New Jersey.

2. Bloesch, A. & Halpin, T. 1997, ‘Conceptual queries using ConQuer-II’, Proceedings of
the 16th International Conference on Conceptual Modeling ER'97 (Los Angeles), D.
Embley, R. Goldstein eds, Springer LNCS 1331 (Nov.) 113-126.

3. Campbell, L., Halpin, T. & Proper, H. 1996, ‘Conceptual schemas with abstractions:
making flat conceptual schemas more comprehensible’, Data & Knowledge
Engineering, 20, 1, 39-85.

4. Fowler, M. with Scott, K. 1997, UML Distilled, Addison-Wesley.

5. Halpin, T. 1995, Conceptual Schema and Relational Database Design, 2nd edn, Prentice
Hall Australia.

6. Halpin, T. 1996, ‘Business rules and Object Role modeling’, Database Prog. & Design, 9,
10, (Miller Freeman, San Mateo CA), 66-72.

7. Halpin, T. 1998, ‘Object Role Modeling: an overview’, white paper,
www.visio.com/infomodeler.

8. Halpin, T. & Proper, H. 1995, ‘Database schema transformation and optimization’,
OOER’95: Object-Oriented and Entity-Relationship Modeling, Springer LNCS, 1021
(Dec.) 191-203.

9. ISO 1982, Concepts and Terminology for the Conceptual Schema and the Information Base, J.
van Griethuysen ed., ISO/TC97/SC5/WG3-N695 Report, ANSI, New York.

10. OMG UML Revision Task Force website, http://uml.systemhouse.mci.com/.

11. UML Partners 1997, UML Semantics, version 1.1, OMG document ad/97-08-04,
www.omg.org.

12. UML Partners 1997, UML Notation Guide, version 1.1, OMG document ad/97-08-05,
www.omg.org.

13. UML Partners 1997, Object Constraint Language Specification, version 1.1, OMG
document ad/97-08-08, www.omg.org.

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

