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My previous fifteen articles on ontology-based approaches to data modeling focused on popular ontology 
languages for the Semantic Web, such as the Resource Description Framework (RDF), RDF Schema 
(RDFS), and the Web Ontology Language (OWL). While these languages may be used to specify a data 
model or ontology, other languages are needed to query such RDF-based data models, e.g. SPARQL (a 
reflective acronym for “SPARQL Protocol and RDF Query Language”) and OWL-QL. In some future 
articles, I might discuss some of these semantic web query languages. However, this article instead starts a 
new series on an alternative, logic-based approach to business data and rules using a single language to 
both create and query data models. 
 
 
Introduction 
 
Because of their formal foundation on description logics, semantic web languages such as OWL may be 
used to perform logical inferences, thus enabling some facts to be derived from other facts. To cater for the 
possibility that the data for the web fact structures of interest might be incomplete, these languages adopt 
the open world assumption (OWA). This entails that if a given proposition of interest (e.g. :Phobos :orbits 
:Mars) is neither asserted nor inferable from other facts, its truth value taken to be unknown, rather than 
false.  
 Logic programming languages are also formally based on logic, and have very strong inferencing 
capabilities, but unlike OWL, they adopt the closed world assumption (CWA), so assume that all the 
relevant facts are known. Hence a proposition of interest is assumed to be false unless it is either asserted or 
derivable from other facts. This CWA approach is also typically used when querying relational databases. 
The two most popular logic programming languages are Prolog and datalog. Prolog (from “Programming 
in Logic) was originally developed by Alain Colmerauer and others in the early 1970s. Although largely 
declarative, Prolog includes some non-declarative constructs (e.g. the cut operator), and its programs are 
not guaranteed to terminate (i.e. execute in a finite time). In spite of these issues, Prolog can be used very 
productively in applications requiring substantial inferencing power. For a readable overview of prolog 
systems, see http://en.wikipedia.org/wiki/Prolog. 
 The term “datalog”, coined by David Maier to combine “data” and “logic”, is appropriate for an 
executable, logic-based language designed for modeling and querying databases. Both Prolog and datalog 
enable recursive rules and queries (e.g. list all one’s ancestors) to be simply and elegantly expressed, and 
efficiently executed. Unlike Prolog however, datalog is purely declarative. Moreover, its syntax conforms 
to safety rules that guarantee that any syntactically well formed datalog program will terminate. For a 
classical, technical reference on datalog see [1], for a recent tutorial on extended datalog see [5], and for a 
brief overview of datalog systems see http://en.wikipedia.org/wiki/Datalog.  
 Of the many datalog and datalog-based systems used in practice, LogiQL (Logical Query Language, 
pronounced “logical”) is a good example of the state of the art, with a successful track record in industrial 
business optimization, especially for predictive and control analytics involving large data sets. LogiQL 
extends traditional datalog in several ways, supporting blocks for modularity, many built-in functions 
(including aggregate functions), and other advanced features. While retaining much of datalog’s traditional 
notation, LogiQL provides additional syntax to distinguish between constraints and derivation rules, and to 
simplify the formulation of various aspects (e.g. declaring a predicate to be functional). Although a 
commercial version of LogiQL is available from LogicBlox, this series of articles focuses on the free, 
cloud-based version of LogiQL that is accessible at https://developer.logicblox.com/playground/.  
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A Simple Data Model 
 
Figure 1(a) depicts a simple data model in Object-Role Modeling (ORM) [3] notation, including a sample 
fact population. Countries are entities that are identified by their country code, and languages are entities 
identified by their language name. The sample population shows only six countries: Australia (AU), 
Canada (CA), France (FR), Luxembourg (LU), the United States (US), and the Vatican City State (VA). 
The unary fact type Country is large is used to record which of those countries are large in size. The binary 
fact type Country officially uses Language records for each country the languages it uses in official documents. 
These languages may or may not be an official language of the country (e.g. neither Australia nor the 
United States has an official language, but both use English in their official documents).  

ORM specifies all facts in terms of roles (depicted by boxes) played by objects. All fact types in ORM 
are set based, so their associated fact tables never duplicate a tuple. A logical predicate is an ordered set of 
the roles in a single fact type, so combining the object type names (e.g. ‘Country’, ‘Language’) with a 
predicate reading (e.g. ‘is large’, ‘officially uses’) provides a fact type reading. The bar over the roles of the 
fact type Country officially uses Language depicts a spanning uniqueness constraint, indicating that a given 
country may officially use many languages, and a given language may be officially used by many countries 
(so the relationship is many-to-many). The large dots on the role connections for that fact type depict 
mandatory role constraints, indicating that each country officially uses some language, and each language 
of interest is officially used by some country. 
 Figure 1(b) depicts the same data model in the Barker notation [2] for Entity Relationship (ER) 
modeling, but without the sample data. Figure 1(c) depicts the same data model as a class diagram in the 
Unified Modeling Language (UML) [6], again without the sample data. Finally, Figure 1(d) depicts a 
populated relational database model for the same example. There are two relational tables, Country and 
CountryLanguageUse, with their primary keys underlined. The foreign key reference from 
CountryLanguageUse.countryCode to Country.countryCode is depicted by an arrowed line. The attribute 
Country.isLarge uses the bit data type, so here 1 denotes True and 0 denotes False. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Example data model in (a) ORM, (b) Barker ER, (c) UML, and (d) relational database notation.  
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The following sections discuss how to code this example in LogiQL, using the free cloud-based 
“playground” provided at the website mentioned earlier. If you wish to execute LogiQL code yourself on 
the LogiQL playground, please note that currently the website supports only Chrome and Firefox as web 
browsers. It is anticipated that other web browsers will be supported in the future.  
 
 
Declaring the Example Schema in LogiQL 
 
In practice, most entities (e.g. a country or language) can be identified or referenced simply by relating 
them to a single value (e.g. a country code or language name). The mode or manner in which a value refers 
to its entity is called a reference mode (often abbreviated to refmode). In ORM, such simple reference 
schemes are usually depicted in compact form, by including the reference mode (e.g. Code or Name) in 
parentheses below the name of the entity type, as shown in Figure 2(a). The dot before the refmode 
indicates that is a “popular” refmode, ensuring that the compact diagram in Figure 2(a) is equivalent to the 
expanded diagram shown in Figure 2(b). Other kinds of refmodes exist (e.g. for unit-based reference), but 
are ignored in this article. 

In Figure 2(b) the uniqueness constraint bars over each role of the fact type indicate that they are one-
to-one relationships (e.g. each country has at most one country code, and each country code is of at most 
one country). The large dots on the reference roles hosted by Country and Language indicate that those 
roles are mandatory (so each country has a country code, and each language has a language name). So the 
predicates that map Country to CountryCode and Language to LanguageName are injections (i.e. 
mandatory, 1:1 into- relationships). Marking the uniqueness constraints on the roles of CountryCode and 
LanguageName with a double bar indicates that these injections provide the preferred reference scheme for 
Country and Language. 

 
 
 
 
 
 

Figure 2 Reference schemes for Country and Language in (a) compact ORM notation and (b) expanded notation.  

In LogiQL, the entity type Country as well as its reference schemes may be declared using the 
following code. The right arrow symbol “->”, composed of the two keyboard characters “-” and “>”, stands 
for the material implication operator “” of logic, and is read as “implies”. 
 

Country(c), hasCountryCode(c:cc) ‐> string(cc). 
 
Here Country is a unary predicate for the entity type Country, string is a unary predicate for the character 
string datatype, and hasCountryCode is a binary predicate for the reference relationship that relates 
countries to their country codes (or more correctly, the data values representing those country codes). These 
predicates are written in prefix notation, with their arguments appended in parentheses. In this case, the 
arguments c and cc are individual variables (which may be assigned some individual item of interest). To 
save typing, and aid memory, I usually use short names for individual variables based on one or more 
characters in the name of the variable’s semantic type (e.g. “c” for “Country” and “cc” for CountryCode). 
Different variables based on the same type may be distinguished by appending a number to their names 
(e.g. “c1” and “c2” for two country variables). If desired, you may also use longer variable names (e.g. 
“country” instead of “c”).  

The colon “:” in hasCountryCode(c:cc) distinguishes hasCountryCode as a refmode predicate (and 
hence injective), so there is no need to write further code to enforce the mandatory and uniqueness 
constraints on that predicate. Please note that LogiQL formulae must always end with a period. Moreover, 
LogiQL is case-sensitive, so letters entered in lowercase are considered different from letters entered in 
uppercase. You can choose whatever case you like for any letter in the name of a predicate or variable, but 
you must consistently use the same casing choice whenever you use that name. For example, if you use 
“Country” to name an entity type, you cannot reference it later by the name “country”.  
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As a matter of style, I tend to start entity predicates (i.e. unary predicates that denote an entity type) 
with a capital letter, and start other predicates with a lower case letter. This is consistent with how ORM 
fact types are declared in English, and it helps me to immediately distinguish entity predicates from other 
predicates when reading code. You can choose a different style, but be sure to use it consistently.  

The formula “Country(c), hasCountryCode(c:cc)  ‐>  string(cc).” is treated as an abbreviation for the 
following four formulae in logic. The first formula declares that Country is an entity type of interest, using 
“” for the universal quantifier (read as “for each”). You can read this formula as “For each individual c, if 
c is a country then c is an entity”. 
 
  c (Country c  Entity c)  

c,cc [ c hasCountryCode cc  (Country c & string cc) ] 
  c [ Country c  1cc c hasCountryCode cc) ] 
 cc 0..1c c hasCountryCode cc 

 
The second logical formula is a typing constraint to declare the types of the arguments of the 

hasCountryCode predicate. LogiQL requires all its predicates to be strongly typed. The third formula is an 
integrity constraint to ensure that each country has exactly one (i.e. at least one and at most one) country 
code. The fourth formula constrains each country code to refer to at most one country.  

To avoid having to type “”, which is unavailable on standard keyboards, LogiQL formulae assume 
that variables that occur on both sides of an arrow are implicitly universally quantified. As you can see, the 
LogiQL syntax makes it quick and easy to declare an entity type along with an injective reference scheme. 
However, the brevity of the syntax requires care (e.g. don’t forget to include the colon “:” between the 
variables of a refmode predicate, and don’t forget to end each formula with a period “.”). 
 Similarly, the entity type Language can be declared along with its reference scheme as follows. Here 
I’ve used the letter “l” as an individual variable for a language, and “ln” as a variable for a language name. 
This brevity saves typing, but if you think “l” might be confused with the numeral for the number one, feel 
free to choose a different name (e.g. “lang” or even “language”) for the language variable. 
 

Language(l), hasLanguageName(l:ln) ‐> string(ln). 
 

The fact types Country is large and Country officially uses Language may be declared in LogiQL as follows.  
 

 isLarge(c) ‐> Country(c). 
  officiallyUses(c, l) ‐> Country(c), Language(l). 

 
In LogiQL, a comma between two formulae stands for the logical and-operator, often displayed as an 
ampersand “&” in logic. Hence, these constraints correspond to the following type declarations in logic: 
 

  c ( c isLarge  Country c ) 
  c,l [ c officiallyUses l  ( Country c & Language l ) ] 
 
This means that the predicate named “isLarge” can be applied only to countries, and the predicate named 
“officiallyUses” can be applied only to country, language pairs. If this is not the case for the business 
domain being modeled, then you need to choose other, typically longer, names. For example if you wish to 
record which countries are large as well as which cars are large, then you must distinguish the predicates by 
naming them differently, e.g. “isLargeCountry” and “isLargeCar”, or “country:isLarge” and “car:isLarge”. 
In rare cases, you might instead create a common supertype and apply the predicate to that; but for 
countries and cars it would be very unlikely that we would want to create a supertype of them. At any rate, 
LogiQL requires different names for different predicates. 
 We have now coded all of the schema in Figure 1(a) in LogiQL, with the exception of the mandatory 
role constraints that each country officially uses some language, and each language is officially used by 
some country. Coding of such mandatory role constraints will be discussed in the next article. Ignoring 
those two constraints, the schema may be declared by just these four lines of LogiQL code. We’ll see how 
to add the data in the next section. 
 

Country(c), hasCountryCode(c:cc) ‐> string(cc). 
Language(l), hasLanguageName(l:ln) ‐> string(ln). 
isLarge(c) ‐> Country(c). 

  officiallyUses(c, l) ‐> Country(c), Language(l). 
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To enter the schema in the free, cloud-based REPL (Read-Eval-Print-Loop) tool available on 
LogicBlox’s playground website (https://developer.logicblox.com/playground/), use	a	supported	browser	
such	as	Chrome	or	Firefox	 to	 access	 the	website,	 then	 click	 the	“Open in new window” link to give 
yourself a full screen for entering the code. Schema code is entered in one or more blocks of one or more 
lines of code, using the addblock command to enter each block. After the “/>” prompt, type the letter “a”. A 
drop-down list of available commands starting with the letter “a” now appears. Click the addblock option to 
have the addblock command added to the code window. Typing a space character and single quote after the 
addblock command causes a pair of single quotes to be appended, with your cursor placed inside those 
quotes ready for your block of code (see Figure 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Invoking the addblock command in the REPL tool. 

  
Now copy the four lines of schema code provided above in this article to the clipboard (e.g. using 

Ctrl+C), then paste it between the quotes (e.g. using Ctrl+V), and then press the Enter key. You are now 
notified that the block was successfully added, and a new prompt awaits your next command (see Figure 4). 
By default, the REPL tool also appends an automatically generated identifier for the code block (e.g. 
‘block_1Z1C1DPH’). For simplicity, block identifiers are omitted in this article. Alternatively, you can 
enter each line of code directly, using a separate addblock command for each line.  
 
 
 
 
 
 
 
 

Figure 4 Adding a block of code. 

 
 
Declaring a Derived Fact Type 
 
Now suppose that we are interested in knowing which countries are “multilingual”, in sense of officially 
using at least two languages. Figure 1(a) shows how to model this requirement in ORM, by adding the 
derived fact type Country is multilingual, along with a derivation rule to perform the derivation. In ORM, 
derived fact types are appended with an asterisk “*”.The ORM derivation rule is specified in FORML 
(Fact-Oriented Modeling Language) [4], a formal textual language for ORM. Here, “<>” (read “is not equal 
to”) denotes the inequality operator (). Although this derivation rule could have been specified using the 
count function, I’ve used the more fundamental formulation shown here because discussion of aggregate 
functions is postponed till a later article.  
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Figure 1(b) shows how to model this in UML, by adding the derived attribute isMultilingual to the 
Country class. In UML, derived attributes are prepended with a slash “/”. In UML, derivation rules are 
typically specified in the Object Constraint Language (OCL). Since OCL expressions are often difficult for 
business users to validate no OCL specification is provided here. The Barker ER notation does not support 
derived attributes or derived relationships. In a relational database, the derivation rule may be specified in a 
number of ways (e.g. using a view). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 Adding a derived fact type to the sample schema in (a) ORM and (b) UML. 

 
Database systems that use logic-based languages such as Prolog or datalog are called deductive 

databases because they enable even complex deductions to be elegantly specified and efficiently executed. 
In LogiQL, derivation rules for derived fact type or queries are specified as left-arrow rules, using the left 
arrow symbol “<-” (read as “if”) to denote the inverse material implication operator “” in logic. 
Derivation rules are specified as Horn clauses, which take the form head <- body. As discussed, variables 
that occur in both the head and body of the rule are implicitly universally quantified. Moreover, variables 
that occur only in the body of the rule are implicitly existentially quantified. These requirements are 
illustrated in the following example. 

If you want to reference a derived predicate in a later rule, you need to provide a name for it. For our 
current example, I’ve used the name “isMultilingual” for the derived predicate corresponding to the derived 
fact type Country is multilingual. The derivation rule in LogQL may be declared as shown below. The variables 
l1 and l2 are used for languages, and “!=” denotes the inequality operator (). Each comma between 
conditions in the rule body stands for the logical and-operator. 

 
isMultilingual(c)  <‐  officiallyUses(c, l1), officiallyUses(c, l2), l1 != l2. 

 
The implicit quantification rules ensure that the head variable c is universally quantified, and the 

variables l1 and l2 are existentially quantified because they are introduced in the body. So the LogiQL rule 
above is equivalent to the following rule in logic, where  denotes the existential quantifier (read as “there 
exists some”). For the sample data, only Canada and Luxembourg satisfy the derived predicate. 

 
c [c isMultilingual    l1, l2 (c officiallyUses l1 & c officiallyUses l2 & l1  l2) ]  

 To add the rule in REPL to the existing schema code, simply use an addblock command with the 
above LogiQL code between single quotes after the command. The block structure of LogQL enables you 
to build large programs one block at a time.  
 
 
Adding the Example Data in LogiQL 
 
The data in Figure 1(a) may be entered in LogiQL using the following delta rules. A delta rule of the form 
+fact inserts that fact. For example, the delta rule “+isLarge("AU").” inserts the fact that Australia is a large 
country. Because the isLarge predicate is known to apply to instances of Country, whose reference scheme 
using country codes is also known, the LogiQL compiler interprets “AU” in this context to be the country 
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whose country code is represented by the string "AU". Similarly, languages may be represented by their 
quoted names.  

Please note that plain, double quotes (i.e. "," ) are needed here. For example, single quotes or smart 
double quotes (e.g. “, ”) are unacceptable. Various word processors, such as Microsoft Word (which I’m 
using to write this article) use smart quotes by default. Hence it’s best to use a basic text editor such as 
WordPad or NotePad to enter code that will later be copied into a LogiQL tool. 
 

+isLarge("AU"), +isLarge("CA"), +isLarge("FR"), +isLarge("US"). 
+officiallyUses("AU", "English"), +officiallyUses("CA", "English"). 
+officiallyUses("CA", "French"), +officiallyUses("FR", "French"). 
+officiallyUses("LU", "French"),  +officiallyUses("LU", "German"). 
+officiallyUses("LU", "Luxembourgish"). 
+officiallyUses("US", "English"), +officiallyUses("VA", "Italian").  

 
 Here I’ve chosen to enter one or two facts per line of code, ending each line with a period. For 
entering large amounts of data, there are quicker ways that reduce the typing involved, but this basic 
approach will suffice for now. Note that there is no need to add delta rules to insert countries and languages 
because those facts are implied by the typing and mandatory role constraints on the officiallyUses 
predicate. For example, the assertion +officiallyUses("AU", "English") implies the assertions +Country("AU")  
and +Language("English"). However, there is no harm in adding those facts separately if you wish.  
 A delta rule of the form –fact is used to retract a fact, and a delta rule of the form ^fact may be used 
for an insertion or to update the value component of a functional fact. Those kinds of delta rules will be 
discussed in a later article.  
 Delta rules to add or modify data are entered using the exec (for ‘execute’) command rather than the 
addblock command. To invoke the exec command in the REPL tool, type “e” and then select exec from the 
drop-down list. Typing a space character and single quote after the exec command causes a pair of single 
quotes to be appended, with your cursor placed inside those quotes ready for your delta rules. 

Now copy the six lines of data code provided above to the clipboard (e.g. using Ctrl+C), then paste it 
between the quotes (e.g. using Ctrl+V), and then press the Enter key. A new prompt awaits your next 
command. Both schema and data have now been entered (see Figure 6). Alternatively, you can enter each 
line of data yourself directly, using a separate exec command for each line.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 Adding the data below the program code. 

 
 
Printing and Querying the Database in LogiQL 
 
Now that the data model (schema plus data) is stored, you can use the print command to inspect the 
contents of any predicate. For example, to list all the recorded countries, type “p” then select print from the 
drop-down list, and then type a space followed by “C”, then select Country from the drop-down list and 
press Enter. Alternatively, you can type all of “print Country” yourself and then press Enter. Figure 7 
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shows the relevant result. By default, the REPL tool also prepends a column listing automatically 
generated, internal identifiers for the returned values, but for simplicity these identifiers are omitted here.  
 
 
 
 
 
 
 
 
 
 

Figure 7 Using the print command to list the extension of a predicate. 

  
To perform a general query, you need to specify a derivation rule to compute the facts requested by 

the query. If you want to reference a derived predicate in a later rule, you need to provide a name for it, as 
discussed earlier for the derived fact type Country is multilingual. However, if you simply want to issue a query 
to derive some facts without needing to reference them later, there is no need to name the derived predicate, 
so we just use an anonymous predicate instead to capture the query result. In LogiQL, an anonymous 
predicate uses an underscore “_” as a substitute for a normal predicate name. For example, the following 
rule may be used to derive those large countries that officially use French as a language. 

 

 _(c)  <‐  isLarge(c) , officiallyUses(c, "French"). 
 

Here the rule’s head _(c) uses an anonymous predicate to capture the result derived from the rule’s body. 
Since the variable c is a head variable, it is implicitly universally quantified. Moreover, the compiler knows 
that here the language name is intended to refer to its language. So the above rule is understood as 
shorthand for the following logic formula, where the dummy isReturned predicate is satisfied by what is 
returned by the query, thus standing for an anonymous predicate. 
 
  c [ c isReturned  ( c isLarge & l(c officiallyUses l & l hasLanguageName "French") ) ] 

 
In LogiQL, queries are executed by appending their code in single quotes to the query command. To 

do this in the REPL tool, type “q”, choose “query” from the drop-down list, type a space and single quote, 
then copy and paste the above LogiQL query code between the quotes and press Enter. The relevant query 
result is now displayed as shown in Figure 8. For simplicity, this figure omits display of internal identifiers 
for the returned values. 

 
 
 
 
 
 

Figure 8 Using the query command to execute a sample query. 

 Notice how easy it is to do the equivalent of a relational join between predicates simply by using the 
same variable (c, in this case) in multiple conditions. Compare this with the following SQL code used to 
perform an equivalent query on the relational tables shown in Figure 1(d). 

 

select Country.countryCode 
from Country inner join CountryLanguageUse 
    on Country.countryCode = CountryLanguageUse.countryCode 
where Country.isLarge = 1 and CountryLanguageUse.languageName = ‘French’ 
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To illustrate a query that relies on closed world semantics, consider the following LogiQL query to list 
those countries that are not large. LogiQL uses an exclamation mark “!” for the logical negation operator 
“not”, typically denoted by tilde “~” in logic.  

 
  _(c)  <‐  Country(c), !isLarge(c). 

 
This is equivalent to the following formulation in logic: c [ c isReturned  ( Country c & ~c isLarge ) ]. 
Figure 9 shows the result of running the query in the REPL tool. For simplicity, this figure omits display of 
internal identifiers for the returned values. The failure to find the Vatican City State and Luxembourg in the 
list of large countries is taken to mean that they are not large (negation as failure), so those two countries 
are returned in the result.  

 
 
 
 
 
 

Figure 9 Using the query command to execute a sample query involving negation. 

 
If you omit the condition Country(c) from the query by using “_(c) <- !isLarge(c)”, this will generate 

an error because it violates one of the safety rules that ensure that legal queries execute in a finite time. This 
erroneous query asks instead for anything (not just any country!) in the universe of discourse that is not a 
large country. One of the strengths of datalog, including LogiQL, is its guarantee that rules that are 
syntactically valid will always terminate when executed. 
 
 
Conclusion 
 
The current article discussed some of the basic concepts used in deductive databases, such as Prolog or 
datalog-based systems, to model and query data, using the closed world assumption to make inferences 
involving negation. LogiQL was chosen as a leading edge example of such a system, and used to illustrate 
how such a logic-based approach can be used to facilitate both modeling and querying of databases. This 
short article provided only a brief glimpse at LogiQL’s more basic capabilities. Future articles in this series 
will examine how LogiQL can be used to specify business constraints and rules of a more advanced nature. 
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