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Abstract: A common aim of data modeling approaches is to produce schemas 
whose instantiations are always redundancy-free. This is especially useful when 
the implementation target is a relational database. This paper contrasts two very 
different approaches to attain a redundancy-free relational schema. The Object-
Role Modeling (ORM) approach emphasizes capturing semantics first in terms 
of atomic (elementary or existential) fact types, followed by synthesis of fact 
types into relation schemes. Normalization by decomposition instead focuses on 
“nonloss decomposition” to various, and progressively more refined, “normal 
forms”. Nonloss decomposition of a relation requires decomposition into small-
er relations that, upon natural join, yield the exact original population. Nonloss 
decomposition of a table scheme (or relation variable) requires that the decom-
position of all possible populations of the relation scheme is reversible in this 
way. In this paper we show that the dependency requirement for “all possible 
populations” is too restrictive for definitions of multivalued and join dependen-
cies over relation schemes. By exploiting modeling heuristics underlying ORM, 
we offer better definitions of these data dependencies, and of “nonloss decom-
position”, thus enabling these concepts to be addressed at a truly semantic level. 

1 Introduction 

In relational database design, being able to achieve a fully normalized schema is gen-
erally considered desirable, mainly because relations are then guaranteed to be free of 
redundancy, thus simplifying the process of maintaining consistency as the database 
is updated. The acceptance of that value-premise is in fact the starting point of the 
current paper. The question which this paper addresses is not, whether we need a pro-
cedure for producing normalized relation schemes, but rather, which procedure is both 
effective and most appropriate for achieving this desired result1.  

The question does not have an obvious answer: indeed, various approaches are 
recommended. Conceptual data modeling approaches such as Entity-Relationship 
Modeling (ER) and Object-Role Modeling (ORM) use a two phase process: concep-
tualization, in which information is first portrayed in terms of conceptual schemas 
suitable for communication with domain experts [22], and then deconceptualization 
where these structures are mapped into relational schemas.  

                                                           
1 While some situations may require denormalization for performance reasons, these are best 
handled by starting with a normalized schema and then adapting it as needed, applying con-
straints to ensure controlled redundancy [e.g.,13, pp. 642-647]. 
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In contrast, the normalization approach to database design ignores conceptualiza-
tion, instead representing information directly in terms of relational database struc-
tures, such as relation schemes (i.e. relation variables) and various dependencies. This 
paper’s treatment of normalization focuses on normalization by decomposition, ignor-
ing normalization by synthesis2. Normalization by decomposition basically follows a 
process of achieving progressively higher levels of normalization (called “normal 
forms”) through “nonloss decomposition” of given relational table schemes. Just how 
the original tables became “given” in the first place, the procedure does not say.  

The ER approach captures data in terms of entity attributes and relationships be-
tween entities, and then applies a mapping procedure to transform these structures in-
to a relational database schema [e.g., 2]. The ORM approach captures information in 
terms of atomic fact types, and then applies an algorithm such as Rmap to map these 
fact types and associated constraints into a relational schema [13, 18]. ORM is a 
prime example of the fact-oriented modeling approach, which uses the fact type (rela-
tionship type) as its sole data structure. Features modeled as attributes in ER (e.g., 
Person.birthdate) are modeled in ORM as relationships (e.g., Person was born on 
Date). Other examples of fact-orientation include Natural language Information Anal-
ysis Method (NIAM) [23] and the Predicator Set Model (PSM) [21]. Overviews of 
ORM may be found in [14, 15], and a detailed coverage in [13].  

Nonloss decomposition of a relation requires decomposition into smaller relations 
that, upon natural join, yield the exact original population. Nonloss decomposition of 
a table scheme requires that the decomposition of all possible populations of the rela-
tion scheme is reversible in this way. In this paper we show that the dependency re-
quirement for “all possible populations” is too restrictive for definitions of multival-
ued and join dependencies over relation schemes. Unlike ORM’s conceptual-schema-
design-and-relational-mapping procedure, the traditional normalization procedure nei-
ther seeks, nor invokes the concept of, “atomic” fact types, and this is the source of its 
problem. By exploiting the fact-oriented nature and modeling heuristics of ORM, we 
offer better, more accurate definitions of these data dependencies, and of “nonloss de-
composition”, thus enabling these concepts to be addressed at a truly semantic level. 

Section 2 reviews the traditional notions of nonloss decomposition and data de-
pendency in normalization theory. Section 3 illustrates the failure of the accepted 
definitions of multivalued dependency and 4th normal form. Section 4 solves these 
problems by defining a semantic notion of nonloss decomposition, and applies this 
notion to define semantic versions of multivalued and join dependencies that over-
come the defects in the commonly accepted notions of 4th and 5th normal form. Sec-
tion 5 summarizes the main contributions and lists references. 

                                                           
2 Normalization by synthesis assumes as input the set of all attributes and functional dependen-
cies, and provides an algorithm to group the attributes into relation schemes. As such input is 
typically unavailable in practice, the synthesis technique is mainly of academic interest and has 
been largely ignored by practitioners. Its main transforms, however, have analogous mapping 
transforms in ORM (e.g., all FDs are determined by semantic uniqueness constraints).  
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2 The Traditional Version of the Normalization Procedure 

As mentioned above, the traditional version of the normalization procedure comprises 
a process of achieving progressively higher levels of normalization (called “normal 
forms”) through “nonloss decomposition” of given relational table schemes. In ma-
thematics, the term “relation” means a set of ordered n-tuples. In relational databases 
[3], tuples are ordered by name (by pairing value entries with their attribute name). 
By the Principle of Extensionality, sets are determined by their membership, and 
hence are fixed (unchanging). So in relational databases a relation is basically a table 
population (fixed set of tuples). In contrast, a relation scheme is a table structure or 
table variable, whose population may vary at different times. A relation scheme is 
sometimes referred to as a relation schema [6] or “relvar” [5]. We now explain what 
is meant by “nonloss decomposition”.  

2.1 The traditional definition of “nonloss decomposition” 

The notion of “decomposition” involved here means, the breaking up of a table 
scheme, through relational projection, into smaller schemes, the union of whose head-
ings includes all the attributes of the original scheme, and whose headings are usually 
overlapping, so that natural joins might be performed on the smaller, resulting 
schemes. The notion of “nonloss” involved here means: any facts recorded in (a tuple 
in) the original table may still be retrieved, and therefore no information (or in other 
words, no question-answering ability) has been lost by doing the decomposition. 

This is not to say that there is any worry that tuples will be lost from the original 
table: on the contrary, all the original tuples will definitely be retrieved in (what we 
might call) any “recomposition” through natural join. The concern is rather that some 
scheme-decompositions result in spurious (i.e. extra, non-original) tuples occurring in 
the relation that results from the natural join; and this inability to reproduce exactly 
the original table-population is said to compromise our question-answering ability, or 
as it’s usually said, “information has been lost”. After all, the population resulting 
from the natural join might just as well have been the result of decomposition-and-
recomposition performed on a different starting population. Thus, the traditional defi-
nition of “nonloss” (or “lossless”) decomposition could be stated as, a decomposition 
of the table-scheme such that it is guaranteed that, for any population of the scheme, 
the decomposition will be reversible, that is, a natural join on the relations resulting 
from the decomposition would produce the same, exact, original population as was 
decomposed [5, p. 353; 17, pp. 374ff.]. 

What we need then, it is alleged, is a way to predict what table-scheme decomposi-
tions will be “nonloss” according to the above definition. And this question gets its 
traditional answer from the theory of data dependencies. 
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2.2 Data dependencies (as traditionally defined) 

Normalization theory defines various population-tuple-patterns, called “data depend-
encies”, which guarantee the feasibility of this sort of “nonloss decomposition”. The 
original dependency, which Codd defined in 1971 [4], was “functional dependency” 
(FD). Later, Fagin defined “multivalued dependency” (MVD) [7], and at about the 
same time, others defined the more general “join dependency” (JD) [1]. If we can de-
termine that every possible population of a given relation scheme has one of these da-
ta dependencies, and that it is a “nontrivial” dependency and not enforced by a key-
constraint on the relation scheme, then (according to the traditional normalization 
theory) we can perform on this relation scheme a “nonloss decomposition”, and we 
should do so, in order to approach the desired goal of a normalized relational schema. 

As an example of a decomposition based on a nontrivial MVD, consider Fig. 1, 
where the intended semantics is “Person (identified by Surname) plays Sport (identi-
fied by SportName) and speaks Language (identified by LanguageName)”. 

 
Surname Sport Language 
Halpin judo English 
Halpin karatedo English 
Halpin judo Japanese 
Halpin karatedo Japanese 
Carver judo English 

Fig. 1. A relation with a nontrivial MVD between Surname and Sport/Language 

If we decompose this relation (i.e., population) by doing a relational projection on 
{Surname, Sport} and one on {Surname, Language}, we get the relations in Fig. 2. 
Performing a natural join on these relations reproduces exactly the relation of Fig. 1. 
  

Surname Sport 
Halpin judo 
Halpin karatedo 
Carver judo 

 
Surname Language 

Halpin English 
Halpin Japanese 
Carver English 

Fig. 2. Relations from decomposing Fig. 1’s on {Surname, Sport} and {Surname, Language} 

While that relation is thus nonloss-decomposable into two smaller relations, some 
relations cannot be so decomposed into two relations, but can be so decomposed into 
some larger number of relations (e.g., 3) [1]. This more general case of decomposabil-
ity is called a (nontrivial) “join dependency”. An MVD is a special case of a JD, and 
an FD is a special case of an MVD. 
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2.3 Distinguishing scheme-dependency and population-dependency 

As Date has emphasized [5, p. 65], “it is an unfortunate fact that much of the literature 
uses the term relation when what it really means is a relation variable (as well as 
when it means a relation per se—i.e., a relation value). Historically, however, this 
practice has certainly led to some confusion.... most of the current database literature 
still fails in this respect”. Indeed, it may be said that even Codd [4, pp. 34-35, 62-63] 
and Fagin [8, p. 266; 9, p. 534] seem rather guilty of this; Fagin assumed (rather than 
argued) that all that was needed, in order to make the population-based definitions of 
“FD” and “MVD” relevant to table schemes as found in a real database, was to (spec-
ify, as usual, the relation’s heading, and then) claim the relation may be “time-
varying” (i.e. a time-varying set of tuples). Codd also defined schemes in this way. 

Date is more careful in his thinking here, in defining a table scheme as really a re-
lation-variable (a.k.a. relvar), of a particular relation-type. And this added level of in-
direction opens up scope for more attention to the relation’s heading, and in particular 
to the meaning of that heading, which is in fact a predicate [5, pp. 65-67, 129]. By 
contrast, Codd’s and Fagin’s treatments of dependencies were mathematically pristine 
yet included only cursory consideration, if any, of the table scheme’s semantics. 

One importance of this relation-vs.-relvar distinction for the current discussion is 
that it clarifies our question: We want to know, not the meaning and importance of 
some generic thing called a “data dependency”, but rather, we want to know what 
characteristic(s) of a table scheme – or, if (but only if) it be found relevant, of “every 
possible population” of a table scheme – allows us to pronounce it normalized, or not. 
Also, it clarifies that what traditional normalization theory as pioneered by Codd, Fa-
gin, et al, has defined as “data dependencies”, are tuple-patterns, in relations (i.e. ta-
ble populations), not in relvars (i.e. table schemes). This leaves it an open question, 
whether the connection by which scheme-dependencies have been defined in terms of 
population-dependencies is really valid (viz., that in order for the scheme to have the 
dependency in question, every possible population of the scheme must have the corre-
sponding relation-dependency: “corresponding” here means, the dependencies at both 
levels must be of the same class: FD, MVD, or JD). But as just suggested, what we ul-
timately need is to be able to detect which schemes may be nonloss decomposed. 

3 Failure of the Traditional Normalization Procedure 

And that, as it turns out, is where this version of the normalization procedure fails. 
The failure of this approach to defining “scheme-dependency” can be very easily il-
lustrated for MVDs. An analogous but more general illustration would apply to JDs. 

3.1 Illustrating the failure of the definitions of ‘MVD’ and (thus) ‘4NF’ 

Let us reconsider the relation of Fig. 1. Suppose that for whatever reason, we delete 
from this relation the particular tuple listed fourth in Fig. 1, leaving the population 
shown in Fig. 3. 
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Surname Sport Language 
Halpin judo English 
Halpin karatedo English 
Halpin judo Japanese 
Carver judo English 

Fig. 3. A smaller version (i.e. fewer tuples) of the relation of Fig. 1 

Given our earlier interpretation of this scheme, “Person plays Sport and speaks 
Language”, there is still fact-redundancy in the population, even after removal of this 
tuple (e.g., the fact that Halpin plays judo is stored twice). However, once this tuple 
has been removed, the remaining population is lacking that particular tuple-data-
pattern which is the criterion for presence of a (nontrivial) MVD. There being no non-
trivial MVDs in this population, and if we accept this as one “possible population” of 
this relation scheme (which pragmatically it clearly is), then it follows that there is a 
possible population of this table scheme lacking any nontrivial MVD, and thus, the 
table scheme is in Fourth Normal Form (4NF) despite this fact-redundancy.  

This perhaps surprising result follows from Fagin’s “constructive” characterization 
of multivalued dependencies, which stipulated that if certain tuples are present in a re-
lation that satisfies an MVD, then certain other tuples must appear also. According to 
Fagin [8], given a relation R(X, Y, Z) where X, Y, and Z are attribute sets, the MVD X 
�� Y holds if and only if, whenever (x, y1, z1) and (x, y2, z2) are tuples of R then so 
are (x, y2, z1) and (x, y1, z2). For further discussion, see Fagin & Vardi [10]. 

Since the whole purpose of defining MVDs and 4NF was to avoid fact-
redundancy, the traditional definitions of scheme-MVD and (thus) of 4NF have failed 
to identify correctly the phenomenon causing the problem. If someone suggested the 
table in Fig. 3 for the design of a database, we would want some way of checking 
whether the design was sensible, but normalization theory fails to help. That also 
brings into question the validity of the traditional criterion of “nonloss decomposi-
tion”, since when interpreted conjunctively (as here) the relation scheme populated in 
Fig. 3 clearly can be semantically decomposed into two smaller relation schemes. 

3.2 What went wrong? A research-historical, psychological excursus 

When such a fairly obvious error in a standard, accepted theory goes undetected for 
three decades, one cannot help but ask what went wrong. It is worth noting that 
Codd’s original paper on normalization [4] neither defined any concept of “nonloss 
decomposition”, nor stated any criterion of it; it simply gave an example of such a de-
composition, and said, “No essential information has been lost, since at any time the 
original relation T may be recovered by taking the natural join ... of T1 and T2...”. It 
nowhere stated that this was a necessary, and not merely a sufficient, condition of in-
formation-nonloss. Claiming this as a criterion of nonloss decomposition thus seems 
to have been the contribution of others.  

The problem is, it could be a necessary condition of information-nonloss only if no 
one had ever discovered any other sorts of dependency (past FD). As soon as popula-
tion-MVDs or population-JDs were discovered, the definition of “nonloss decomposi-
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tion” became in need of emendation. Thus, even more interesting than the question 
what went wrong originally, is the question why no one noticed it for so long.  

It is interesting to survey the random variety of ways in which database texts try to 
handle – or, more often, simply overlook or ignore – this surprising error, in their dis-
cussions of MVDs and 4NF. For the only logical way to rebut the above critique of 
the standard definition of scheme-MVD, would be to say that the population of Fig. 3 
is not a legal, “possible population” of this table scheme – even though it obviously is. 
In fact, this is exactly what Date [5, p. 353] and Elmasri and Navathe [7, p. 437] try to 
do, but with defective, and differing, artificial arguments, discussion of which we re-
legate to a footnote.3 Other writers generally either mention, yet forego any discussion 
of, MVD and 4NF (e.g., [2], [17], ); or they provide as an example of nontrivial MVD 
a relation like that in Fig. 3, claiming (contrary to the definition of 4NF they had just 
given) that it is not in 4NF, and thus needs decomposing (e.g., [20]); or else they offer 
such a relation, with its obvious fact-redundancy, yet argue that since it has no non-
trivial MVDs it presents no problem (e.g., [19])! Thus researchers have used varying, 
but ultimately failed, ways to treat the topic of MVDs. 

Such varied approaches suggest that there is no single logical error that most re-
searchers fell into with regard to population-MVDs and 4NF. More likely, the true 
explanation is that by the time MVDs and JDs were discovered (in 1977), everyone 
simply “knew” what nonloss decomposition entailed; and the idea that their assump-
tion about this was just flat wrong, was too radical a thought to occur to anyone.  

                                                           
3  Date [5] does avoid using a 4NF example table and calling it non-4NF; his example relation 

does have a nontrivial MVD, as Fagin defines the latter. However, Date gives a poor excuse 
for restricting himself to such an example: “You might suggest that [the relvar] CTX need 
not include all possible teacher/text combinations for a given course; for example, two tuples 
are obviously sufficient to show that the physics course has two teachers and two texts. The 
problem is, which two tuples? Any particular choice leads to a relvar having a very unob-
vious interpretation and very strange update behavior (try stating the predicate for such a rel-
var! – i.e., try stating the criteria for deciding whether or not some given update is an accept-
able operation on that relvar)” (pp. 391-92). That is weak: the predicate is statable easily, as 
“Course uses Text and has Teacher”; and so if the text is used by that course and the course 
has that teacher, then why, logically, shouldn’t the update be accepted? 

  Elmasri and Navathe [7], like Date, offer an unrealistic justification for limiting them-
selves to a truly non-4NF example relation (p. 437; the italics are ours):  

 
In Figure 13.4(a) the MVDs ENAME��PNAME and ENAME��DNAME, or 
ENAME��PNAME/DNAME hold in the EMP relation. The employee with ENAME 
‘Smith’ works on projects with PNAME ‘X’ and ‘Y’ and has two dependents with 
DNAME ‘John’ and ‘Anna’. If we stored only the first two tuples in EMP ( <‘Smith’, 
‘X’, ‘John’> and <‘Smith’, ‘Y’, ‘Anna’> ), we would incorrectly show associations be-
tween project ‘X’ and ‘John’ and between project ‘Y’ and ‘Anna’; these should not be 
conveyed, because no such meaning is intended in this relation. Hence, we must store 
the other two tuples ( <‘Smith’, ‘X’, ‘Anna’> and <‘Smith’, ‘Y’, ‘John’> ) to show that 
{‘X’, ‘Y’} and {‘John’, ‘Anna’} are associated only with ‘Smith’; that is, there is no as-
sociation between PNAME and DNAME. 

 
 This is spurious reasoning. In the first place, storing the other two tuples does not at all rule 

out the possibility of an “association between PNAME and DNAME”. And conversely, not 
including them does not imply such an association.  
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A contributing factor to this oversight, however, seems to have been the aforemen-
tioned, and mathematicians’ natural, tendency to focus on the syntax – to the neglect 
of semantics, in this case. The definition of “nonloss decomposition” solely in terms 
of population-tuple-patterns and recovery of the exact, original population, even 
though their purported goal was to avoid loss of information (a sort of meaning), says 
something about the syntax-focused nature of most early researchers’ mindset. And as 
we have seen, Date and Fagin conducted essentially all their investigations (pre-1978, 
anyway) at the population level, neglecting the distinct, scheme-level. 

And yet, there is a significant difference between these two, respective levels: The 
relation scheme level has, as an essential part of its makeup, an expression of the 
meaning of the predicate that its relation-heading represents. And it is easily demon-
strable that the basic question, “Does this relation scheme suffer from uncontrolled 
fact-redundancy”, pivots fundamentally on the semantics of the relation scheme, and 
not on the syntax of its populations. Let us reconsider the relation of Fig. 3, but this 
time ascribe to it the alternate semantics, “Person plays Sport only if it is refereed in 
Language”. By assigning it those different semantics, we eliminate the fact-
redundancy which the same relation, with the same heading, had previously. Thus, 
depending only on the semantics, the relation scheme qualifies as normalized or else 
as non-normalized (assuming we take “normalized” to mean: lacking any potential 
fact-redundancy not fully controllable by table-scheme key-constraints). 

4 Redefining Nonloss Decomposition and Scheme-MVD, -JD 

We must, however, return to the traditional definition of “nonloss decomposition”. 
For Date indeed had an argument for that definition—although he considered his ar-
gument so noncontroversial that he relegated it to a footnote! [5, p. 353]: he claimed 
that if the recomposition (after the decomposition) does not reproduce the exact, orig-
inal pre-decomposition population, “we have no way in general of knowing which tu-
ples [in the natural-join table] are spurious and which genuine, [therefore] we have 
indeed lost information”. The question arises: is this argument sound? 

Let us test it on the example we used in Fig. 3. If we decompose this relation on the 
attribute-sets {Surname, Sport} and {Surname, Language}, we get in fact the two ta-
bles shown in Fig. 2. Doing a natural join of these tables, we get back, not the original 
table (of Fig. 3), but the table displayed in Fig. 1, repeated for convenience in Fig. 4 
with its additional (non-original) tuple shown in boldface. 

 
Surname Sport Language 
Halpin judo English 
Halpin karatedo English 
Halpin judo Japanese 
Halpin karatedo Japanese 
Carver judo English 

Fig. 4. The relation resulting from natural join of the tables in Fig. 2 
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To facilitate further discussion, we introduce the notion of relation transparency. 
With respect to a given state of the universe of discourse (UoD), we say that a relation 
is transparent if and only if each candidate tuple (of that relation) that is composed of 
attribute values present in the relation and encodes a fact true of that UoD state, is ex-
plicitly present in the relation. This is similar to our notion of semiclosed fact types 
[16, ch. 10], except that the extension is relative to the role populations not the object 
type populations. For example, with respect to the relation scheme in Fig. 4, a relation 
composed of no rows, or just the first row, or just the first two rows, is transparent. 
Assuming the relation scheme means “Person plays Sport and speaks Language”, the 
relation composed of just the first three rows is not transparent, since it does not in-
clude the fourth row (which is known to be true given the underlying semantics and 
the second and third rows).  

Now, is Date correct, that we have (now) no way of knowing which of the tuples 
populating this relation scheme are true and which are spurious? Before answering 
this, let’s specify the intended semantics, since this seems potentially relevant. First, 
let’s ask the question based on the assumption of our newer semantics, “Person plays 
Sport only if it is refereed in Language”. Even if we knew which rows were original 
(and not simply, that the original rows were true), we could not tell whether this addi-
tional tuple was true, without knowing whether, and indeed that, the original popula-
tion was transparent. 

But if we ascribe to the relation scheme our earlier semantics for it, “Person plays 
Sport and speaks Language”, it is clear that the new, additional tuple must be true, if 
the original ones were. But what is it that is importantly different, about the meaning 
ascribed? It is that this meaning may be split into two predicate meanings without loss 
of information, because the original predicate’s meaning is that of a logical conjunc-
tion, and the meanings of the predicates into which we split it were those of its (two) 
conjuncts. Examination of the tuples shows us that if we know the conjunctions ex-
pressed by the original tuples were true, then we know that the conjunction expressed 
in the additional one is true, because we can see from the four original tuples that both 
conjuncts are true which, conjoined, make up the conjunction asserted by the fifth, 
added tuple. 

This suggests a better definition for “nonloss decomposition”. For it is manifest 
that if and only if we can determine that the original relation scheme is conjunctive in 
meaning, we can know that it is nonloss-decomposable. (Finding a non-key-based, 
nontrivial FD in a relation scheme is one way of implying that its meaning is conjunc-
tive.) Nor do we assume too much, by assuming that we can tell whether its meaning 
is conjunctive: Codd’s and Date’s discussions clearly assume that we have access to 
the meaning of the relations, e.g., we know which populations are “possible” for the 
domain, and which tuples assert truths. 

Having found the true criterion for “nonloss decomposition”, may we continue to 
use the traditional definitions of scheme-MVD, 4NF, etc.? No, we cannot continue to 
use the definition of scheme-MVD, since it requires “every possible population” of 
the relation scheme to have the (population-)MVD, which we have now seen is not a 
necessary (though it be a sufficient) condition for MVD-based decomposability. Nor 
can we continue to use the traditional definition of 4NF, since it is defined in terms of 
that traditional, incorrect sense of “scheme-MVD”. 
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Is this a problem, though? For we have now found a completely effective way to 
tell whether a table-scheme is nonloss-decomposable, and one which has nothing to 
do with finding population-MVDs or -JDs. So do we even need a definition for 
scheme-MVD? Do we really even need to think about 4NF? 

So as not to beg our question of which approach to ensuring normalization is most 
efficient, let us emend so as to correct, if possible, traditional definitions of scheme-
MVD and scheme-JD. We may generalize this correction to the definition of scheme-
FD as well:  

 
scheme { functional | multivalued | join } dependency: 
 
There is a scheme {functional | multivalued | join} dependency over a se-
quence of attribute sets in relation scheme R* if and only if for every possible 
state of the UoD, each transparent relation R that instantiates R* has a rela-
tional dependency of the same kind over those arguments. 

 
This definition-pattern does indeed give us conditions both sufficient and necessary 

for a table-scheme’s being nonloss-decomposable due to its having a pattern involv-
ing the corresponding relation-level data-dependency. However, if this emendation is 
of theoretic significance, it seems nevertheless of very little practical significance; for 
the crucial addition of transparency to the definition-pattern makes the definition un-
usable (except for FDs, as we shall see) apart from a prior, independent knowledge 
that the meaning of the relation scheme is conjunctive!  

So, practically speaking, database design might as well forget about MVDs and 
4NF—as well as JDs and 5NF—and focus instead on the question: is this relation 
scheme’s predicate-meaning conjunctive? However, as practitioners and theoreticians 
may still want to say things about particular patterns of non-normalization that can 
give rise to fact-redundancy, one may adopt the above definition-pattern for scheme 
data dependencies, and give these new concepts that follow this definition-pattern 
some special name, such as “semantic MVD”, “ semantic 4NF”, and so on. 

However, someone might object that this redefinition does too much, since the de-
finition of scheme-FD we have used for all these years worked just fine—i.e., the de-
finition which did not include that segment boldfaced in the above definition-pattern. 
If we need this boldfaced interpolation in the definition, why didn’t we have to have it 
in there before, to define FD in a valid way? The answer is twofold: First, even 
though defining FD without this interpolated clause gives a correct definition, it is not 
really as good a way to define FD, since it doesn’t really define by essentials: the es-
sential question pertains, not to every possible population, but only to those particular 
populations, for each respective, possible state of the universe of discourse, that are 
transparent with respect to that relation scheme.  

Second, an FD is a special case of MVD, one whose functional nature makes it a 
constraint on each individual tuple in the relation, and not just on the relation (popula-
tion) as a whole; thus, mere removal of a tuple cannot possibly eliminate a popula-
tion-FD, whereas it very easily, as we have seen, may eliminate a population-MVD or 
-JD. Thus, if an FD applies to each population that is transparent for a given relation 
scheme, it applies also to any other population that is true of this same state of the 
UoD. That is the only reason the traditional definition of FD actually worked. But be-
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cause it worked, it also gives us a way to detect conjunctive (and hence nonatomic) 
predicates in other, less direct ways, e.g. comparing the arity of the candidate keys 
with the arity of the relation scheme, or looking for scheme-FDs that are not implied 
by any whole-candidate-key constraint (i.e., “embedded” FDs).  

A rational procedure for ensuring fully normalized relation schemes should thus 
begin by decomposing the relation schemes into atomic (and hence nonconjunctive) 
relation schemes, by looking for conjunction in the given predicates (a necessarily in-
formal process that can be reliably performed only by a domain expert), and double-
checking this by looking for nontrivial FDs of certain forms incompatible with atom-
icity, as is done in ORM’s Conceptual Schema Design Procedure (CSDP) [13].  

In ORM, a fact is a proposition taken to be true by the community of users in the 
business domain. An atomic fact is either an elementary fact or an existential fact. An 
elementary fact is essentially the instantiation of a typed logical predicate that is irre-
ducible in the sense that it cannot be (re)phrased as a conjunction of simpler facts with 
the same object types. For example, Person was born in Country is an elementary fact type. 
An existential fact is an assertion that an object exists (e.g., There is a Country that 
has CountryCode ‘AU’).  

From an ORM perspective, each tuple of a relation encodes one or more atomic 
facts. In step 1 of ORM’s CSDP, the domain expert verbalizes information examples 
(e.g. table rows in an output report) in natural language sentences, and the modeler 
rephrases the information in terms of atomic facts, checking with the domain expert 
that the meaning is as intended. Part of this step includes the conjunction check: Can 
this sentence be (re)phrased as a conjunction of simpler sentences with the same ob-
ject terms? While the presence of conjunctive connectors (e.g., “and”) can help in an-
swering this question, such a presence is neither necessary nor sufficient, since natural 
language is not formally regulated. Another requirement for atomicity is the absence 
of nulls in sample fact populations (if a null occurs in a fact tuple, the remaining non-
null portion corresponds to a smaller fact, so the original fact is nonatomic). 

Knowledge of constraints sometimes helps. For example, the ternary fact type Flight 

goes from Airport to Airport can be seen to be nonatomic because of FDs from the flight 
role to each airport role. ORM detects such cases using checking procedures such as 
its n-1 rule which provides a sufficient (though not necessary) condition for splittabil-
ity [13].  

Sample populations (relations) can help to reveal the absence of constraints, but 
they cannot, even in principle, determine whether a relation scheme is atomic. This is 
because there is no formal way that a sample population can be determined to be sig-
nificant in this sense. In the final analysis, the atomicity of a relation scheme depends 
on what the relation scheme means and on the nature of the business domain. The on-
ly safe way to resolve this is to check with a domain expert who understands both 
these aspects, and this is necessarily an informal process. 

ORM includes formal machinery for determining whether one fact type is equiva-
lent to a conjunction of other fact types, but equivalence proofs rely on the provision 
of contextual definitions for defining predicates in one representation in terms of pre-
dicates in the other representation [11, 12], and the provision of such context is an in-
formal process that again relies on a domain expert who understands both the predi-
cate meanings and the business domain. This is a matter of logic that applies 
regardless of the modeling approach used.  
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Fig. 5. A projection-join equivalence 
 
For example, Fig. 5 depicts one of many projection-join equivalence patterns in 

ORM. Conceptual schema 1 (CS1) is a ternary fact type, while conceptual schema 2 
(CS2) comprises two binary fact types. The equivalence formulae in contextual defi-
nition D1 define the predicates of CS2 in terms of the predicates of CS1, and the D2 
formula defines the CS1 predicate in terms of CS2’s predicates, thus providing con-
servative extensions to each schema, which allow the equivalence to be formally 
proved using standard logical techniques such as deduction trees [11]. 

The relation schemes in Fig. 1 and Fig. 2 respectively conform to the ternary and 
binary patterns CS1 and CS2. Whether these relation schemes are equivalent depends 
on whether the semantics of the schemes match the patterns shown in the contextual 
definitions D1 and D2. Using our first interpretation of the schemes (Person plays Sport 

and speaks Language), D1 and D2 become (using sorted logic with mixfix predicates): 
 
D1: ∀x:Person ∀y:Sport (x plays y ≡ ∃z:Language x plays y and speaks z) 
  ∀x:Person ∀y:Language (x speaks y ≡ ∃z:Sport x plays z and speaks y) 
D2: ∀x:Person ∀y:Sport ∀z:Language (x plays y and speaks z .≡. x plays y &  x speaks z) 
 
Although this example is trivial, whether the ternary is decomposable into the two 

binaries depends totally on whether these definitions apply, and this decision is an in-
formal issue to be decided by the domain expert. ORM provides a sugared textual 
language to render the equivalences in a form more digestible to nontechnical users, 
essentially asking whether the ternary can be rephrased as a conjunction of the bina-
ries. As no such definitional context can be provided for the alternative semantics 
(Person plays Sport only if it is refereed in Language), the decomposition is ruled out, and again 
this is an informal issue. These decisions can be made merely by understanding the 
semantics or meaning of the predicates, rather than relying on inspection of sample 
relations that are possibly not transparent. 

From a proof-theoretic perspective, once the domain expert agrees to the conjunc-
tion claim (and hence the relevant definitional context), the matter is settled. From a 
model-theoretic perspective, the equivalence applies if and only if the conservatively 
extended schemas have exactly the same models (interpretations that are true for the 
UoD), and this requires agreement between transparent relations. But pragmatically, 
the model theoretic approach is of little direct, practical use, because in assigning a re-
lation to each predicate (part of the task of providing an interpretation), one tacitly as-
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sumes that the relation contains all the true tuples for that population of individuals 
(i.e. the relation is transparent). But in order to know the relation is transparent, we 
need to know whether the relation is conjunctive for that business domain.  

The essential confusion in the traditional definitions of MVDs etc. hinged on the 
loose notion of “possible instance” of a relation scheme. In practice, many possible 
but nontransparent instances may be provided, and the only way to detect problems 
with these is to return to the fundamental notion of logical conjunction. Recasting the 
notions of MVDs, 4NF, JDs, and 5NF in terms of logical equivalence involving con-
junctions provides the only truly semantic formulation of these concepts.  

For example, let R(X, Y, Z) be an ORM fact type where R is the logical predicate 
and X, Y, Z are role sequences (null, unit, or composite). We say that R includes the 
semantic MVD X ↠ Y if and only if for each possible UoD state, each fact instance 
R(x, y, z) has the same truth value as that of the conjunction S(x, y) & T(x, z) for some 
predicates S and T. This is equivalent to the definition of semantic MVD given earlier, 
but is more useful as it relates directly to the fundamental equivalence question to be 
answered by the domain expert in determining atomicity of a fact type. Similarly, se-
mantic JDs may be defined in terms of n-term conjunctions (n > 1). 

Once atomic relation schemes are determined, to get a relational schema all of 
whose relation schemes are in 5NF, we synthesize new, possibly nonatomic relation 
schemes from the atomic relation schemes where that can be done without introduc-
ing nontrivial scheme-MVDs or -JDs, or any nontrivial FDs not enforceable by key 
constraints. This synthesis can be done algorithmically, based on key and other con-
straints, as illustrated by ORM’s Rmap algorithm [13]. 

Thus, we see that the steps which ORM includes pursuant to a fully normalized re-
lational database schema, including conceptualization in terms of atomic facts fol-
lowed by application of its Rmap procedure, effectively cover not only the formal as-
pects of normalization theory but also the informal semantic interpretation that is 
pragmatically needed. 

5 Conclusion 

This paper identified problems in traditional normalization theory regarding accepted 
definitions of nonloss decomposition and multivalued and join dependencies (and 
hence 4NF and 5NF), which unrealistically rely on relations being completely repre-
sentative. The notion of relation transparency was introduced to refine these defini-
tions, thus providing a theoretical resolution of these issues. However, a pragmatic so-
lution to these problems was seen to require a judgment on conjunction based, 
semantic equivalences, an essentially informal process involving the understanding of 
the domain expert rather than inspection of sample relations.  

The modeling techniques used in ORM, which begin with establishing atomic fact 
types, later grouped into relation schemes using a well known mapping algorithm, 
provide one practical realization of the recommended approach. While this basic ap-
proach could be adapted to other modeling approaches such as ER and the Unified 
Modeling Language (UML), ORM’s emphasis on communication in natural language 
sentences seems to make it especially suitable for this kind of procedure. 
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Step 1 of ORM’s Conceptual Schema Design Procedure begins by having domain 
experts verbalize concrete information examples of interest in natural language sen-
tences. A later stage of this step requires the modeler to rephrase the information in 
terms of atomic facts, checking atomicity with the domain expert by asking whether a 
sentence of the specified kind can be equivalent to a conjunction of smaller sentences 
(using concrete instances). Once this is established, the modeler abstracts from the 
fact instances to the fact types. Either now or later in the design procedure, modelers 
may also draw on ORM theory that clarifies how the presence of uniqueness con-
straints impacts atomicity. This procedure has time and again proved effective in in-
dustrial modeling. By ensuring atomicity at the front end, it is relatively easy to later 
ensure that fact types are grouped into fully normalized relation schemes. 

The current paper strikes at the heart of the procedure promoted by standard nor-
malization theory, inasmuch as it undermines the syntactically-based, too restric-
tive definition of “nonloss decomposition” that underlies that procedure. Clearly, a 
more semantics-based “normalization procedure” is required: as we have shown, only 
a procedure based on the informal semantics, and specifically one that will determine 
whether that semantics is conjunctive, is adequate to the problem of normalization. 
The implication for teaching normalization is that both the theory and the procedure 
taught, must be adjusted to compensate for these problems in the traditional treat-
ments. 

 It is true that current normalization practice tends to ignore 4NF and 5NF; and 
some might see that fact as undermining the relevance of our findings about the the-
ory and method of normalization. However, to ignore 4NF and 5NF does not fix the 
problem in the theory, nor provide an alternative way to arrive at a fully normalized 
schema. As we stated at the outset, normalization is a good, needful thing; however, a 
theory that incorrectly states the criteria of “fully normalized”, and thereby makes 
reaching that goal impractical, is a theory that needs amending. 
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