

ORM 2 Graphical Notation

Technical Report ORM2-01, September 2005

Terry Halpin

www.neumont.edu

http://www.neumont.edu/

Contents

1

2

3

4

Introduction

The ORM 2 Graphical Notation
2.1 Main Objectives
2.2 Object Type Shapes
2.3 Shapes and Readings for Predicates and Roles
2.4 Objectified Associations
2.5 Internal Uniqueness Constraints
2.6 External Uniqueness Constraints
2.7 Mandatory Role Constraints
2.8 Set-comparison and Exclusive-Or Constraints
2.9 Frequency and Value Constraints
2.10 Ring Constraints
2.11 Subtyping
2.12 Role Path Disambiguation
2.13 Modalities

The ORM 2 Textual Notation

Conclusion

Appendix

3

4
4
4
5
6
7
8
8
8
9
9

11
11
11

12

12

15

© 2005, Neumont University ORM 2 TechReport 1 Page 2 of 17

ORM 2 Graphical Notation

Terry Halpin

Neumont University
terry@neumont.edu

Abstract: Object-role Modeling (ORM) is a fact-oriented modeling approach for expressing,
transforming and querying information at a conceptual level. Unlike Entity-Relationship modeling and
Unified Modeling Language class diagramming, fact-oriented modeling is attribute-free, treating all
elementary facts as relationships expressed in natural language sentences. For information modeling,
ORM graphical notations are typically far more expressive than other notations, and ORM’s attribute-
free nature promotes semantic stability and facilitates natural verbalization. Based on industrial
experience that identified ways to improve current ORM languages and associated tools, a project is
under way to provide open-source tool support for a second generation ORM (ORM 2), that has
significant advances over current ORM technology. This paper provides an overview of, and motivation
for, the enhancements introduced by the ORM 2 graphical notation.

1 Introduction

Introduced in the mid 1970s, Object-Role Modeling (ORM) facilitates modeling, transforming, and
querying business information in terms of the underlying facts of interest, where all facts and rules may be
verbalized in language easily understood by non-technical users of those business domains. Unlike Entity-
Relationship (ER) modeling [6] and Unified Modeling Language (UML) class diagramming [31, 32, 33],
ORM treats all elementary facts as relationships (unary, binary, ternary, etc.), thus regarding decisions for
grouping facts into structures (e.g. attribute-based entity types, classes, relation schemes, XML schemas) as
implementation concerns irrelevant to business semantics. By avoiding attributes in the base model, ORM
enhances semantic stability and populatability, and facilitates natural verbalization. For information
modeling, fact-oriented graphical notations are far more expressive than ER and UML graphical notations.
Fact-oriented textual languages are based on formal subsets of native languages, so are easier to understand
by business people than technical languages like the Object Constraint Language (OCL) [35]. Fact-oriented
modeling includes procedures for mapping to attribute-based structures, such as those of ER or UML.

The fact-oriented modeling approach comprises a family of closely related dialects. Some use the
generic term “Object-Role Modeling” (ORM) [15], while others use different names such as Natural
language Information Analysis Method (NIAM) [12, 36], and Fully-Communication Oriented Information
Modeling (FCO-IM) [1, 2]. ORM languages include RIDL [30], LISA-D [26, 27] and FORML [15].
Though notationally different, the Object-oriented Systems Model (OSM) [11] is a close relative to ORM,
with its attribute-free approach. Commercial ORM tools include the ORM solution within Microsoft’s
Visio for Enterprise Architects [23], and the FCO-IM tool CaseTalk [5]. Free ORM tools include
VisioModeler [34], Infagon [28], and academic prototypes such as Dogma Modeler [10], an ORM-based
tool for specifying ontologies. An introduction to ORM is included in [14], and a detailed treatment in [15].

Building on industrial experience that identified ways to improve current ORM languages and tools,
our project aims to provide tool support for a second generation ORM (called ORM 2), that has significant
advances over current ORM technology in functionality and usability. This paper overviews and motivates
enhancements introduced by the ORM 2 graphical notation, and discusses a tool under development to
support it. The initial development team comprised of faculty and students at Neumont University is being
expanded to include external collaborators from industry and academia. The current implementation is
coded in C# as a free, open-source plug-in to Microsoft Visual Studio .NET, using the new Microsoft
Designer Framework Software Development Kit for building domain specific languages.

The rest of this report is structured as follows. Section 2 focuses on improvements to the ORM
graphical notation. Section 3 briefly discusses enhancements to the ORM textual notation. Section 4
summarizes the main results, suggests topics for further research, and lists references. An appendix
includes sample schemas to illustrate the impact of changing to the new notation.

© 2005, Neumont University ORM 2 TechReport 1 Page 3 of 17

2 The ORM 2 Graphical Notation

This technical report is concerned almost exclusively with the ORM 2 graphical notation. Later technical
reports will discuss other aspects of ORM 2 tool support. We begin by summarizing the main objectives for
the new ORM notation, and then examine specific notational areas in turn, including reasons for changes
from the previous notation.

Most of the ORM 2 figures in this report were drawn using an ORM 2 Visio stencil that our team
created. Currently, this stencil may be used for drawing purposes only. In contrast, the ORM 2 modeling
tool is intended to support automatic transformation between graphical and textual representations, as well
as transformation to/from other schemas (e.g. relational, object, and XML schemas), and code generation
(e.g. to DDL or program code). The tool is also intended to front-end other modeling tools (e.g. one might
enter and transform an ORM schema to a relational schema for export to another database design tool). As
schemas developed in the tool are fully exposed as XML, there is significant scope for inter-operability.

2.1 Main Objectives

While being far more expressive graphically than UML or industrial ER for static data models, ORM
models tend to consume more space because of their attribute-free nature. This diagram size problem may
be ameliorated by providing attribute-views on demand, and/or by redesigning the ORM graphic notation
to be more compact. The first solution includes displaying “minor fact types” as attributes on an ORM
diagram, as well as automatically generating attribute-based schemas for implementation targets (e.g.
relational schemas, object schemas, and XML schemas). We postpone work on this first solution for now,
instead focusing on a new ORM graphical notation that is more compact and hopefully more acceptable in
other aspects. The main objectives for the ORM 2 graphical notation are:

• More compact display of ORM models without compromising clarity
• Improved internationalization (e.g. avoid English language symbols)
• Notation changes that are reasonably acceptable to an identified short-list of key ORM users
• Simplified drawing rules to reduce the effort to create a graphical editor
• Full support of textual annotations (e.g. footnoting of textual rules)
• Extended use of views for selectively displaying/suppressing detail
• Support for new features (e.g. role path disambiguation, modalities, open world aspects)

 For convenience, we use the term “ORM1 notation” to refer to the ORM notation currently supported
by Microsoft’s Visio-based ORM solution, which we call the “Visio ORM1 tool”. We use the term “ORM2
notation” for the new notation supported by our ORM 2 tool. The ORM2 notation typically yields schema
diagrams that consume about 65% the size of an equivalent diagram in the ORM1 notation. See the
appendix for a representative schema displayed in both the old and new notations. All English-specific
symbols in the ORM1 notation have been replaced by language-neutral symbols to improve localization in
different language communities. A survey was issued to eighteen ORM experts regarding the proposed
ORM2 notation, and each change introduced by the new notation was acceptable to a majority of the
responders.

2.2 Object Type Shapes

In the ORM1 notation, object type (entity type and value type) shapes are depicted by named ellipses.
While ellipses are faster for users to draw manually on paper, they consume more usable space than
rectangles (hard or soft), especially when long names are involved. For ORM 2, the default shape for object
types is a soft rectangle (rectangle with rounded corners). Besides providing a more compact container for
the enclosed text, this is consistent with the current notation for nested object types. The shape auto-sizes to
provide appropriate white space around the text, while maintaining a convenient minimum size, and users
may spread text over multiple lines (as in the Visio ORM1 tool). Text settings and controls follow existing
conventions (i.e. text is displayed in a user-definable default style, individual text elements may be user-
selected for alternate styles, text may be left/center/right justified, etc.). To make this notation change more
acceptable, we allow the use of an ellipse or a hard rectangle as an alternative shape for object types, as
determined by a configuration option. Figure 1 shows some examples.

© 2005, Neumont University ORM 2 TechReport 1 Page 4 of 17

 Activity

(Code)

Activity
Name

A

Activity
(Code)

Activity
Name

A

Activity
(Code)

Activity
Name

A

(a) (b) (c) (d) Activity
(Code)

Activity
Name

A

Figure 1 Object type shapes in (a) old notation and new notations: (b) default; (c) and (d) alternatives.

 If the ellipse option is chosen, the white space is reduced compared to the old notation. Object type
shape examples in the rest of this document all use the default shape (soft rectangle). Of the 18 experts
surveyed, 12 preferred the soft rectangle, 5 preferred the ellipse shape, and one preferred the hard rectangle.

2.3 Shapes and Readings for Predicates and Roles

To save space, the size of the role boxes is significantly reduced. A line connecting a role box to an object
type shape is always directed from the mid-point of an outer edge of the role box to the center of the object
type shape (unlike the Visio ORM1 tool, which connects to the closest connection point on the object type
shape). When using the ORM 2 stencil to connect a role to the object type, drag the role connector line onto
the object type shape until the connection is confirmed by a red rectangle display around the object type. As
with the current solution, predicate readings may be user-positioned beside the predicate shape. Figure 2
shows a simple example. Although there is no longer room to place a predicate reading inside a role box, as
in Figure 2(a), this option was rarely used anyway. By default, all text is in 7 point Tahoma (the Visio
ORM1 tool uses 8 point Arial).

Activity
(Code)

Activity
Namehas

(a)

Activity
(Code)

Activity
Namehas

(b)

Figure 2 The old role box size (a) is significantly reduced (b) with text in 7 point Tahoma.

The reduced role box size still allows space for multiple single-role set-comparison constraints to be

conveniently aligned, as shown in Figure 3. The old notation in Figure 3(a) is roomy enough to allow an
additional set-comparison constraint between the role-pairs, without moving the other constraints. The new
notation would require moving one of the constraints to make room for the third constraint, but since such
cases are rare we believe this inconvenience to be minor and acceptable. The size of the constraint bubbles
is slightly reduced in the new notation.

A BA B

(a) (b)

Figure 3 An example with set-comparison constraints in the old notation (a) and new notation (b).

© 2005, Neumont University ORM 2 TechReport 1 Page 5 of 17

 As with the ORM1 notation for binary fact types, a forward predicate reading is read left-to-right or
top-to-bottom, and an inverse predicate reading (pre-pended by “« ”) is read right-to-left or bottom-to-top.
For a binary fact type, forward and inverse predicate readings may be displayed together, separated by a
slash without the “« ” (as in the Visio ORM1 tool), or separately on either side of the predicate shape with
the inverse reading pre-pended by “« ”. At some future stage, we might replace the “«” symbol by an
arrowhead (e.g. “ ”). The display of any predicate reading may be toggled on/off. Multi-line reading
displays are allowed. Figure 4 shows some of the possibilities.

Person Country
was born in

« is birthplace ofPerson Country

was born in / is birthplace of

(a) (b)

Person Country
was born in / is birthplace of

Person Country

was born in /
is birthplace of

Figure 4 Forward and inverse predicate reading display in (a) ORM and (b) ORM 2.

The current ORM 2 stencil stores only one reading with the predicate shape (for now, other readings

must be entered in a text box). The ORM 2 modeling tool, however, is much more flexible. For a fact type
with n roles (n > 0), ORM 2 allows predicate readings for all possible (n!) permutations of role orderings.
For each such role ordering, one or more alias readings may be supplied (e.g. “is employed by” as an alias
of “works for”). Query navigation in relational style from any role of an n-ary fact type is enabled by just n
predicate readings (one starting at each role), but industrial modelers requested this additional flexibility.
For non-binary fact types, at most one predicate reading is displayed on the diagram. ORM 2 supports fact
type names (as distinct from fact type readings) for the fact type (e.g. “Birth” for Person was born on Date),
though this is not normally displayed on the diagram. One use of fact type names is to generate a suitable
target name for fact types that map to a single table or class. Multi-line fact type names are allowed.

The display of role names in square brackets may be toggled on/off by the user (e.g. using layers).
Multi-line role names are allowed. The display toggle may be set globally or on an individual role basis.
Although each fact type has at least one predicate reading, the display of predicate readings may be
suppressed (e.g. to focus on role names). By default, role names are displayed in a different color (e.g.
indigo). Role names may be positioned individually where the user desires. Figure 5 shows some
possibilities. The ORM 2 stencil does not yet provide special support for role names, but these may be
entered in text boxes.

Person Country
[birthCountry]

Person Country
[birthCountry]

[native]

Figure 5 Role names may be displayed in square brackets.

2.4 Objectified Associations

Apart from a reduction in size, the soft-rectangle notation for objectified associations is retained in ORM 2.
Figure 6 shows a simple example. Although the shape is similar, the formal semantics for objectification
have been updated for ORM 2, so the result of objectifying a binary or longer relationship type may now be
viewed as an entity type that has a composite reference scheme whose reference projection bears an
equality constraint to the fact type being objectified [22]. When using the ORM 2 stencil to connect a role
to the nested object type, Ctrl-drag the role connector line onto the nested object type shape until the
connection is confirmed by a red rectangle display around the object type.

© 2005, Neumont University ORM 2 TechReport 1 Page 6 of 17

plays

“Playing !”

Person Sport

is at
SkillLevel

(a) (b)

"Playing !"
SkillLevel

Person Sport

plays

is at

Figure 6 Nesting in (a) ORM 1 and (b) ORM 2.

 Moreover, nesting of unary predicates is now allowed (Figure 7 gives an example), as well as nesting
of predicates with non-spanning uniqueness constraints, in accordance with new formal semantics and
guidelines for objectification for ORM 2 [16, 22].

President
(Name) died

“Death !”

occurred in

Country
(Code)

Figure 7 ORM2 allows objectification of unary fact types.

2.5 Internal Uniqueness Constraints

Internal uniqueness constraints in ORM 1 are indicated by arrow-tipped lines. ORM 2 replaces these by
simple lines. Simple lines are faster to draw manually, and intuitively correspond to the common practice of
underlining keys. The line for an individual role box is shorter than the box length to avoid ambiguity in
interpretation. Figure 8 shows some examples (the constraints may also be displayed below the predicate).
In the current ORM notation, a primary uniqueness constraint is marked “P”. In ORM 2, a preferred
uniqueness constraint is indicated by a double line (intuitively corresponding to one common practice of
doubly underlining primary keys when alternate keys exist)—see the bottom example. In ORM 2 the notion
of preferred uniqueness is conceptual, corresponding to a business decision to prefer a particular
identification scheme. By default, all ORM 2 constraints are displayed in violet color.

 (a) (b)

P

Figure 8 Internal uniqueness constraints in (a) ORM and (b) ORM 2.

 In the case of an internal uniqueness constraint that spans non-contiguous roles, a dashed line bridges
the gap across the inner role(s) that are excluded from the constraint. If the association is elementary, such a
case may arise only if the association is ternary or higher. For example, the upper constraint in Figure 9
spans the first and last roles. Of the 18 experts surveyed, 17 preferred the new internal constraint notation.

 (a) (b)

Figure 9 A uniqueness constraint over non-contiguous roles in (a) ORM and (b) ORM 2.

© 2005, Neumont University ORM 2 TechReport 1 Page 7 of 17

2.6 External Uniqueness Constraints

In the ORM1 tool, external uniqueness is denoted by a circled “U” (for unique), modified to a circled “P”
(for “primary”) if chosen as the primary reference scheme of an entity type. This notation is biased towards
the English language, and has no resemblance to the notation for internal uniqueness. For international-
ization and consistency, the ORM 2 notation uses a circled underline for external uniqueness constraints,
and a circled double underline if the constraint provides the preferred identification scheme (see Figure 10).
This is consistent with the new internal uniqueness constraint notation and the horizontal notation for
relational schemas [15]. Of the 18 experts surveyed, 14 preferred this new constraint notation.

 (a) (b)

Figure 10 External uniqueness constraints in (a) ORM and (b) ORM 2.

2.7 Mandatory Role Constraints

The ORM1 tool indicates simple mandatory constraints by a solid dot either (a) at the intersection of an
entity type shape and the line connecting it to a role, or (b) at the role end. Option (b) is needed to avoid
ambiguity when an object type plays many mandatory roles whose connections to the object type are too
close to distinguish which role the dot applies to. Currently, disjunctive mandatory (inclusive-or)
constraints are depicted by placing the solid dot in a circle connected by dotted lines to the roles it applies
to. ORM 2 retains this notation, except that the solid dot is consistently colored violet and a global
configuration option determines the default placement of simple mandatory dots at the role or object type
end. Users may override this global setting on an individual role basis. Figure 11 shows some simple
examples.

was born in

(a) (b)
Client
(Id)

Country
(Code)

Client
(Id)

Country
(Code)

was born in

Client
(Id)

SSN

Driver
LicenseNr

Client
(Id)

Country
(Code)

was born in

has

has

was born in

Client
(Id)

 Country

(Code)

 has

Client
(Id)

has

SSN

Driver
LicenseNr

Figure 11 Mandatory constraints in (a) ORM and (b) ORM 2.

2.8 Set-comparison and Exclusive-Or Constraints

Subset, exclusion, and equality constraints will continue to be denoted by a circle containing ⊆, ×, =
respectively, connected to the associated roles with dashed lines (as in the Visio ORM1 tool), except that
the ORM 2 shapes are slightly smaller, with refined symbols. In addition, ORM 2 will support the n-ary
version of the equality constraint. Exclusive-or constraints will continue to be denoted by combining the
circled × with the circled dot, and users will have the option of displaying the two component constraints
overlaid or separately (as in ORM 1). Figure 12 shows the basic shapes.

© 2005, Neumont University ORM 2 TechReport 1 Page 8 of 17

= +

(a) (b)

Figure 12 Set-comparison and Xor constraints in (a) ORM and (b) ORM 2.

2.9 Frequency and Value Constraints

Frequency constraints will be denoted as in the Visio ORM1 tool, except that single symbols (≤, ≥) replace
double symbols (<=, >=), for example 2, ≥3, 2..5. Value constraints are denoted as in ORM 1, except that
many values may be displayed on a single line (e.g. {‘M’, ‘F’}, {‘a’,..’z’}), and open ranges are supported
(e.g. “> 0” for PositiveReal).
 ORM 2 allows value constraints to apply to roles, not just object types. For example, the metamodel
fragment in Figure 13 includes value constraints on the minimumMultiplicity and maximumMultiplicity
roles. Of the 18 experts surveyed, all favored support for open ranges, and 17 favored support for role-
based value constraints.

Role
(nr)

Multiplicity
(Code)

has minimum-

has maximum-

{‘0’, ‘1'}

{‘1’, ‘n'}

{‘0’, ‘1’, ‘n’}

Figure 13 This Information Engineering metamodel fragment includes value constraints on roles.

2.10 Ring constraints

The ORM1 Visio tool uses the following English abbreviations for various ring constraints: ir = irreflexive,
as = symmetric, ans = antisymmetric, it = intransitive, ac = acyclic, sym =symmetric. Ring constraints are
displayed as a list of one or more of these options, appended to a ring symbol “O”, and connected to the two
relevant roles (if placed very close, the connection display is suppressed). For example, the reporting
relationship is declared to be acyclic and intransitive as shown in Figure 14(a).
 This ORM1 notation for ring constraints has two main disadvantages: the abbreviations are specific to
English (e.g. Japanese readers might not find “ir” to be a memorable choice for irreflexivity); also the ring
constraint display tends to cross over other lines (as in the example).To remove the English bias, and help
the user understand the semantics of the constraint, ORM 2 uses intuitive icons. To reduce edge crossings,
ORM 2 omits role links if the predicate has just two roles played by the same object type (or compatible
object types). For example, in ORM 2 the reporting relationship is declared to be acyclic and intransitive as
shown in Figure 14(b).

 Employee

(EmpNr)

(ac,it)

reports to

(a) (b)
Employee
(EmpNr)

reports to

Figure 14 Acyclic and Intransitive ring constraints depicted in (a) ORM and (b) ORM 2.

The ORM 2 icons for ring constraints are loosely based on my icons for teaching ring constraints,

where small circles depict objects, arrows depict relationships, and a bar indicates what is forbidden (see
Figure 15).

© 2005, Neumont University ORM 2 TechReport 1 Page 9 of 17

reflexive symmetric transitive

irreflexive asymmetric intransitive acyclicantisymmetric

Figure 15 The original icons used for teaching ring constraints.

Reflexive means the object bears the relationship to itself. Symmetric means that if the first bears the

relationship to the second, then the second bears that relationship to the first. Transitive means that if the
first bears the relationship to the second, and the second to the third, then the first bears the relationship to
the third. Irreflexive means the object cannot bear the relationship to itself. Asymmetric means that if the
first bears the relationship to the second, then the second cannot bear that relationship to the first.
Intransitive means that if the first bears the relationship to the second, and the second to the third, then the
first cannot bear the relationship to the third. Anti-symmetric means that if the objects are different, then if
the first bears the relationship to the second, then the second cannot bear that relationship to the first. The
different fills in the anti-symmetric icon indicate that the inverse relationship is forbidden only if the two
objects differ (in the other icons, we allow that the objects may be the same). Acyclic means that a chain of
one or more instances of that relationship cannot form a cycle (loop). The meaning of these original icons
should be intuitively obvious.

For diagramming purposes, these teaching icons they take up too much room, especially when
combinations of ring constraints apply. So simplifying adaptations were made to ensure that the final icons
are distinguishable on screen and in print, while maintaining a compact footprint. The proposed icons print
clearly at 600 dpi, and are readable on screens at typical resolutions used for industrial modeling. They may
be distinguished on low resolution screens by increasing the zoom level.
 ORM 2 provides an icon for each the ten simple or combined ring constraint choices supported by the
current Visio ORM1 tool (see Figure 16). In contrast to the teaching icons, arrow-heads are removed (they
are assumed), and relevant pairs of constraints are collapsed to a single icon. While the simplified icons are
less intuitive than the teaching icons, once their origin is explained it should be easy to remember their
meaning. Of the 18 experts surveyed, 14 agreed to the new ring constraint icons.

Irreflexive

Symmetric

Asymmetric

Antisymmetric

Intransitive

Acyclic

Acyclic and Intransitive

Asymmetric and Intransitive

Symmetric and Intransitive

Symmetric and Irreflexive

Figure 16 ORM 2 icons for ring constraints.

© 2005, Neumont University ORM 2 TechReport 1 Page 10 of 17

2.11 Subtyping

The ORM1 arrow notation for subtyping will remain, perhaps supplemented by use of Euler diagrams as an
alternative display option for simple cases. ORM 2 adds support for explicit display of subtype exclusion
(⊗) and exhaustion () constraints, overlaying them when combined, as shown in Figure 17. As such
constraints are typically implied by other constraints in conjunction with subtype definitions, their display
may be toggled on/off. Of the 18 experts surveyed, 17 approved this extension.

 Person

(SSN)

Male
Person

Female
Person

Gender
(Code)is of

{‘M’, ‘F’}

Figure 17 Explicit display of exclusion and exhaustion constraints for a subtyping scheme.

ORM 2 will allow both defined subtypes and asserted subtypes (no subtype definition provided).

Subtype definitions will be supported in a high level formal language rather than mere comments, and may
be displayed in text boxes on the diagram.

2.12 Role Path Disambiguation

In ORM, it was possible to encounter constraints involving role paths where the diagram is ambiguous as to
which role paths are intended. ORM 2 removes that ambiguity by enabling the display of role-sequence
numbers to be toggled on/off. For example, the objectification example discussed earlier has implicit link
fact types as shown in Figure 18(a) to enable navigation between Playing, Person and Sport. This
objectification is treated as a view of the internal representation shown in Figure 18(b), where the role-pairs
that feature as arguments of the equality constraint are highlighted by including their role sequence
numbers (1.1, 1.2; 2.1, 2.2).

Person Sport
plays

“Playing !”
SkillLevel

is at

<< is by is of

Playing !

Person Sport

SkillLevel
is at

<< is by << is of

plays
1.1 1.2

2.1 2.2

(b)(a)

Figure 18 Explication of the objectification in Figure 6 of Person plays Sport as Playing.

2.13 Modalities

In ORM 2, business rules have a modality that is either alethic or deontic [19]. Alethic rules are necessarily
true of the business domain (e.g. [It is necessary that] Each Person was born in at most one Country), whereas deontic
rules are obligations that might be violated (e.g. It is obligatory that each Person is the husband of at most one
Person).
 ORM 2 distinguishes modalities by using different colors (by default, violet for alethic and blue for
deontic). A further mark (e.g. “o” for obligatory) will be added to deontic constraints to enable them to be
distinguished by means other than color. A final decision on this mark is yet to be made.

© 2005, Neumont University ORM 2 TechReport 1 Page 11 of 17

3 The ORM 2 Textual Notation

As in the Visio ORM1 tool, all components of an ORM schema (e.g. fact types and graphical constraints)
will have automated verbalizations. The ORM 2 constraint verbalization mechanism is superior in several
ways to that of the ORM1 tool, and uses improvements discussed elsewhere [19]. Details of the improved
verbalization support will be provided in subsequent technical reports.
 Unlike the Visio ORM1 tool, the ORM 2 tool will also support a high level, formal textual language
for inputting ORM schemas (including fact types, constraints and derivation rules), ORM queries, and
possibly population changes (fact addition and deletion). Although similar in many respects to the
verbalization language, the input language will often enable constraints to be entered in a more concise
form. The tool will generate code to implement the semantics conveyed by the textual language. The
textual language will cover all the semantics conveyed by the graphical language, as well as additional
semantics (e.g. constraints that cannot be captured graphically).
 Textual constraints may be noted on the diagram by footnote numbers, with the textual reading of the
constraints provided in footnotes that can be both printed and accessed interactively by clicking the
footnote number. Figure 19 provides an example. Of the 18 experts surveyed, 17 approved the use of
footnotes for textual constraints.

GIrange !
(LevelName)

GlycemicIndex
(Nr)

has minimum-

has maximum-

[minGI]

[maxGI]

1

1 For each GIrange: minGI < maxGI

Figure 19 Textual constraints appear as footnotes in ORM 2.

 Derivation rules may be specified for derived object types (subtype definitions) and derived fact types.
ORM 2 allows fully-derived subtypes (full subtype definition provided), partly-derived subtypes (partial
subtype definition provided) and asserted subtypes (no subtype definition provided). Subtype definitions
will be supported as derivation rules in a high level formal language rather than mere comments, and may
be displayed in text boxes as footnotes on the diagram. Iff-rules are used for full derivation, and if-rules for
partial derivation. Here are sample rules in ORM 2’s textual language for fully and partly derived subtypes
respectively:

Each Australian is a Person who was born in Country ‘AU’.

 Person1 is a Grandparent if Person1 is a parent of some Person2 who is a parent of some Person3.

 The final grammar for the textual language is still to be determined, but should support declaration of
ORM models and queries in relational style, attribute style, and mixed style. Relational style uses predicate
readings (e.g. the subtype definitions above), while attribute style uses role names. Attribute style is
especially useful for derivation rules and textual constraints of a mathematical nature (e.g. see Figure 19).
 As an example of a derivation rule for a derived fact type, we may define the uncle association in
relational style thus: Person1 is an uncle of Person2 iff Person1 is a brother of a Person3 who is a parent of Person2.
Assuming the role names “brother” and “parent” are declared, we may also specify the rule in attribute
style thus: For each Person: uncle = brother of parent. Further examples may be found elsewhere [19, 21].

4 Conclusion

This report discussed a project under way to specify and provide open source tool support for a second
generation ORM (called ORM 2), that provides significant advances over current ORM technology.
Proposed changes to the graphical notation were described, and their motivation explained. Results from a
survey of ORM experts with regard to these changes were noted. Various enhancements to the ORM
notation were examined, and some improvements from a tooling perspective were identified.

© 2005, Neumont University ORM 2 TechReport 1 Page 12 of 17

 The tools project team is currently researching extensions to ORM in several areas, including richer
support for join constraints (e.g. distinguishing inner-outer join semantics, displaying complex join
constraints, and role path disambiguation [20]), extended open/closed world semantics, and deontic/alethic
constraint distinctions.
 Parties who own a copy of Visio (Standard edition or higher) and who wish to explore the new
notation using models of their own may download a zip file containing the Visio ORM 2 stencil and
template, plus a sample model file from the following site: www.orm.net/ORM2_Beta.zip. This ORM 2
stencil is for drawing only—it does not generate code.
 At the time of writing, the ORM 2 modeling tool is in the early stages of development. Considerable
progress has been made on entering ORM models, verbalizing them, and mapping them to object models,
but mapping ORM schemas to relational and XML schemas has not yet begun. The diagrammer is
currently limited to a single page diagrams. Future work is planned to support multi-page diagrams with
layer toggles to hide/show features, and several abstraction mechanisms (e.g. decomposing models into
multiple levels of refinement).

Acknowledgements

This paper benefited from discussion with other members of the ORM 2 tool project team at Neumont
University. The new notation for ring constraints is due largely to Tyler Young, Scott Baldwin, Nickolas
Maly, and Jeremy Wilde. These students also created the ORM 2 Visio stencil, with technical assistance
from Scott LeGendre (Microsoft) on use of dynamic glue. Other students who worked on the tool project
include Aaron Bowen, Jaron Briggs, Orion Buhler, Adam Burt, Korvyn Dornseif, Paul Ewert, Darren
Flynn, Brant Frank, Adam Greenwood, Corey Kaylor, Michelle Ouzts, Kevin Owen, Aaron Shumway,
Joseph Tanner and Jeff Wilde. The team also includes five faculty members (Andy Carver, Ed Crowson,
Matt Curland, Terry Halpin, and Tony Morgan) with Matt Curland as lead programmer.

The following kindly responded to our survey on the ORM graphical notation: Don Baisley (Unisys,
USA); Dick Barden (InConcept, USA); Scott Becker (Orthogonal Software, USA); Linda Bird (DSTC,
Australia); Anthony Bloesch (Microsoft, USA); Necito dela Cruz (Guidant Corporation, USA); Dave
Cuyler (Sandia National Labs, USA); Lance Delano (Microsoft, USA); Jan Dietz (Delft University of
Technology, The Netherlands); Ken Evans (AMBO.biz Ltd , UK); Gordon Everest (University of
Minnesota, USA); Brian Farish (Vertaasis, USA); Pat Hallock (InConcept, USA); Bill MacLean (Avnet,
Inc, USA); John Miller (Perpetual Data Systems, USA); Borje Olsson (Object Role Consulting, Sweden);
Erik Proper (Radbaud University Nijmegen, The Netherlands); Pieter Verheyden (STARLAB, University
of Brussels).

References

1. Bakema, G., Zwart, J. & van der Lek, H. 1994, ‘Fully Communication Oriented NIAM’, NIAM-ISDM

1994 Conf. Working Papers, eds G. M. Nijssen & J. Sharp, Albuquerque, NM, pp. L1-35.
2. Bakema, G., Zwart, J. & van der Lek, H. 2000, Fully Communication Oriented Information Modelling,

Ten Hagen Stam, The Netherlands.
3. Bird, L., Goodchild, A. & Halpin, T.A. 2000, ‘Object Role Modeling and XML Schema’, Conceptual

Modeling – ER2000, Proc. 19th Int. ER Conference, Salt Lake City, Springer LNCS 1920, pp. 309-322.
4. Bloesch, A. & Halpin, T. 1997, ‘Conceptual queries using ConQuer-II’, Proc. ER’97: 16th Int. Conf. on

conceptual modeling, Springer LNCS, no. 1331, pp. 113-26.
5. CaseTalk website: http://www.casetalk.com/php/.
6. Chen, P. P. 1976, ‘The entity-relationship model—towards a unified view of data’. ACM Transactions

on Database Systems, 1(1), pp. 9−36.
7. Cuyler, D. & Halpin, T. 2005, ‘Two Meta-Models for Object-Role Modeling’, Information Modeling

Methods and Methodologies, eds J. Krogstie, T. Halpin, & K. Siau, Idea Publishing Group, Hershey
PA, USA (pp. 17-42).

8. Demey J., Jarrar M. & Meersman R. 2002, ‘A Markup Language for ORM Business Rules’, in
Schroeder M. & Wagner G. (eds.), Proc. International Workshop on Rule Markup Languages for
Business Rules on the Semantic Web (RuleML-ISWC02 workshop), pp. 107-128, online at
http://www.starlab.vub.ac.be/publications/STARpublications.htm.

© 2005, Neumont University ORM 2 TechReport 1 Page 13 of 17

http://www.starlab.vub.ac.be/publications/iswc02rml.pdf

9. De Troyer, O. & Meersman, R. 1995, ‘A Logic Framework for a Semantics of Object Oriented Data
Modeling’, OOER’95, Proc. 14th International ER Conference, Gold Coast, Australia, Springer LNCS
1021, pp. 238-249.

10. DogmaModeler: www.starlab.vub.ac.be/research/dogma/dogmamodeler/dm.htm.
11. Embley, D.W. 1998, Object Database Management, Addison-Wesley, Reading MA, USA.
12. Falkenberg, E. D. 1976, ‘Concepts for modelling information’, in Nijssen G. M. (ed) Proc 1976 IFIP

Working Conf on Modelling in Data Base Management Systems, Freudenstadt, Germany, North-
Holland Publishing, pp. 95-109.

13. Halpin, T. 1989, ‘A Logical Analysis of Information Systems: static aspects of the data-oriented
perspective’, doctoral dissertation, University of Queensland.

14. Halpin, T. 1998, ‘ORM/NIAM Object-Role Modeling’, Handbook on Information Systems
Architectures, eds P. Bernus, K. Mertins & G. Schmidt, Springer-Verlag, Berlin, pp. 81-101.

15. Halpin, T. 2001, Information Modeling and Relational Databases, Morgan Kaufmann, San Francisco.
16. Halpin, T. 2003, ‘Uniqueness Constraints on Objectified Associations’, Journal of Conceptual

Modeling, Oct. 2003. URL: www.orm.net/pdf/JCM2003Oct.pdf.
17. Halpin, T. 2004, ‘Comparing Metamodels for ER, ORM and UML Data Models’, Advanced Topics in

Database Research, vol. 3, ed. K. Siau, Idea Publishing Group, Hershey PA, USA, Ch. II (pp. 23-44).
18. Halpin, T. 2004, ‘Information Modeling and Higher-Order Types’, Proc. CAiSE’04 Workshops, vol. 1,

(eds Grundspenkis, J. & Kirkova, M.), Riga Tech. University, pp. 233-48. Online at
http://www.orm.net/pdf/EMMSAD2004.pdf.

19. Halpin, T. 2004, ‘Business Rule Verbalization’, Information Systems Technology and its Applications,
Proc. ISTA-2004, (eds Doroshenko, A., Halpin, T. Liddle, S. & Mayr, H), Salt Lake City, Lec. Notes
in Informatics, vol. P-48, pp. 39-52.

20. Halpin, T. 2005, ‘Constraints on Conceptual Join Paths’, Information Modeling Methods and
Methodologies, eds J. Krogstie, T. Halpin, T.A. & K. Siau, Idea Publishing Group, Hershey PA, USA,
pp. 258-77.

21. Halpin, T. 2005, ‘Verbalizing Business Rules: Part 11’, Business Rules Journal, Vol. 6, No. 6.
URL: http://www.BRCommunity.com/a2005/b238.html.

22. Halpin, T. 2005, ‘Objectification’, Proc. CAiSE’05 Workshops, vol. 1, eds J. Calestro & E. Teniente,
FEUP Porto (June), pp. 519-31.

23. Halpin, T., Evans, K, Hallock, P. & MacLean, W. 2003, Database Modeling with Microsoft® Visio for
Enterprise Architects, Morgan Kaufmann, San Francisco.

24. Halpin, T. & Proper, H. 1995, ‘Database schema transformation and optimization’, Proc. OOER’95:
Object-Oriented and Entity-Relationship Modeling, Springer LNCS, vol. 1021, pp. 191-203.

25. Halpin, T. & Wagner, G. 2003, 'Modeling Reactive Behavior in ORM'. Conceptual Modeling –
ER2003, Proc. 22nd ER Conference, Chicago, October 2003, Springer LNCS.

26. ter Hofstede, A. H. M., Proper, H. A. & Weide, th. P. van der 1993, ‘Formal definition of a conceptual
language for the description and manipulation of information models’, Information Systems, vol. 18,
no. 7, pp. 489-523.

27. ter Hofstede A. H. M, Weide th. P. van der 1993, ‘Expressiveness in conceptual data modeling’, Data
and Knowledge Engineering, 10(1), pp. 65-100.

28. Infagon website: http://www.mattic.com/Infagon.html.
29. Lyons, J. 1995, Linguistic Semantics: An Introduction, Cambridge University Press: Cambridge, UK.
30. Meersman, R. M. 1982, The RIDL conceptual language. Research report, Int. Centre for Information

Analysis Services, Control Data Belgium, Brussels.
31. Object Management Group 2003, UML 2.0 Infrastructure Specification. Online: www.omg.org/uml.
32. Object Management Group 2003, UML 2.0 Superstructure Specification. Online: www.omg.org/uml.
33. Rumbaugh J., Jacobson, I. & Booch, G. 1999, The Unified Language Reference Manual, Addison-

Wesley, Reading, MA.
34. VisioModeler download site: http://www.microsoft.com/downloads/results.aspx?displaylang=en&

freeText=VisioModeler.
35. Warmer, J. & Kleppe, A. 1999, The Object Constraint Language: precise modeling with UML,

Addison-Wesley.
36. Wintraecken J. 1990, The NIAM Information Analysis Method: Theory and Practice, Kluwer,

Deventer, The Netherlands.

© 2005, Neumont University ORM 2 TechReport 1 Page 14 of 17

Appendix: Sample models

To give a feeling for the difference made by the ORM 2 notation, a 3 page Diet model (minus subtype
definitions, textual constraints, and some derivation rules) is shown in both the Visio ORM source model
notation and the ORM 2 notation. With either notation, the mandatory role dots may be placed at either the
object type end or the role end. The color fill for derived fact types is an optional choice.

Food
(Name)

Mass
(g)

Serve
Size

NrUnits

Form
(Name)

Unit
(Name)

{ 'liquid',
 'solid' }FoodGroup

(Name)

GlycemicIndex
(Nr)

GIrange
(LevelName)

{ 'Low',
 'Medium',
 'High' }

[minGI]

[maxGI]

[GI]

{ 0 .. 140 }

<< has maximum-

<< has minimum-

is measured in

includes

has standard-

has

...includes...of fat per serve

...has...of sugar per serve

...has...of carbs per serve

<< has

<< belongs to

has a lowGI *

has a highGI *

has a mediumGI *

Page 1:

« has minimum-

« has maximum-

includes

is measured in

« belongs to

has

[GI]

FoodGroup
(Name)

ServeSize

GIrange !
(LevelName)

Unit
(Name)

GlycemicIndex
(Nr)

Food
(Name)

Mass
(g)

Form
(Name)

NrUnits

[minGI]

[maxGI]

{ ‘liquid’,
 ‘solid’ }

{ ‘Low’,
 ‘Medium’,
 ‘High’ }

has a lowGI *

has a mediumGI *

has a highGI *

has standard-

...has… of
carbs per serve

...has… of
sugar per serve

...has… of
fat per serve

has
{0..140}

© 2005, Neumont University ORM 2 TechReport 1 Page 15 of 17

Drink DrinkType
(Code)

{ 'A',
 'J',
 'M',
 'S',
 'O' }

Food
(Name)

Energy
(kJ)

Form
(Name)

{ 'liquid',
 'solid' }

Alcoholic
Drink

Alcohol%
(Nr)

NonAlcoholic
Drink

Mass
(g)Water%

(Nr)

MilkBased
Drink

FattyAcidType
(Code)

Concentration
(%)

3

{ 'S',
 'M',
 'P' }Derivation Rule:

* For each NonAlcoholicDrink
water% = 100 * serveWaterMass / serveMass

[serveMass]

[serveWaterMass]

Serve
Size

is of / is of

...contains...in...

...has...of water per serve

...has...per serve

<< has **

...has...of cholesterol per serve

has

<< ...provides...per serve

has standard-

<< has

Page 2:

...has…of cholesterol
per serve

…has…of water
per serve

…has…per serve

« has

« ...provides… per serve

is of / is of

has

« has **

Food
(Name)

Concentration
(%)

FattyAcidType
(Code)

MilkBased
Drink

Water%
(Nr)

Mass
(g)

NonAlcoholic
Drink

DrinkType
(Code)

Alcohol%
(Nr)

Energy
(kJ)

Form
(Name)

ServeSize

{ ‘liquid’,
 ‘solid’ }

{ ‘A’,
 ‘J’,
 ‘M’,
 ‘S’,
 ‘O’ }

[serveMass]

[serve
WaterMass]

3

{ ‘S’,
 ‘M’,
 ‘P’ }

...contains...in...

Drink

Alcoholic
Drink

has standard-

Derivation Rule:
* For each NonAlcoholicDrink:

water% = 100 * serveWaterMass / serveMass

© 2005, Neumont University ORM 2 TechReport 1 Page 16 of 17

Page 3:

Athlete
(Nr)

E-mail
Address

Sport !
(Name)

"Drinking !"

NrServes
PerWeek

Athlete
Name

Drink

Sex
(Code)

as

{ 'M',
 'F' }

Date
(ymd)

Criterion
(Name)

Rating
(Nr)

{ 'General endurance',
 'Muscular strength',
 'Mobility of joints' }

{ 1 .. 3 }
3

Certificate
(Name)

consumes

...on...has...

seeks

is advised by / advises

<< has

<< was born on

<< is of

<< has

P

drinks

plays

coaches

was awarded

Rank
(Nr)

Country
(Code)

...has...won by...

<=3

 « was born on

« has

« is of

<=3

3

{ 1 .. 3 }

Date
(ymd)

is advised by

Athlete
Name

E-mail
Address

{ ‘M’,
 ‘F’ }

Sex
(Code)

Athlete
(Nr)

NrServes
PerWeek

Drink
{ ‘General endurance’,
 ‘Muscular strength’,
 ‘Mobility of joints’ }

Criterion
(Name)

Sport !
(Name)

Rating
(Nr)

Country
(Code)

Rank
(Nr)

Certificate
(Name)

« advises

is birthdate of

« has

drinks

“Drinking !”

consumes

plays

coaches

was awarded

 ...on...has...

 ...has...won by...

seeks

© 2005, Neumont University ORM 2 TechReport 1 Page 17 of 17

