

ORM	Normative	Abstract	Syntax	and	Semantics:	non-normative	glossary	
	
ORM.net	Proposed	Recommendation		
	 	
Version:	Public	BETA	2	-	9	March	2020	
Editors:	Enrico	Franconi,	Terry	Halpin	

	
Abstract	
	

Object-Role	Modeling	(ORM)	is	a	rigorous	approach	to	modeling	and	querying	at	the	conceptual	level	the	information	semantics	of	arbitrary	domains.	This	glossary	document	lists	key	terms	and	
symbols	used	in	ORM,	and	briefly	explains	their	meaning	by	means	of	examples.	It	shows	examples	of	the	main	graphical	conceptual	model	constructs	-	namely	declarations,	constraints,	and	derivation	
rules	-	together	with	their	corresponding	abstract	syntactic	expressions,	and	their	semantics	specified	as	closed	first-order	logic	formulas.	This	non-normative	document	makes	use	of	the	definitions	
specified	in	the	normative	document	defining	the	abstract	syntax	and	formal	semantics	of	ORM	conceptual	models.	The	semantics	of	an	ORM	conceptual	model	is	defined	by	transforming	the	model	to	
first-order	logic	axioms,	whose	finite	models	denote	the	legal	abstract	information	structures	of	the	conceptual	specification.		

	
Status	of	this Document	
	

This	section	describes	the	status	of	this	document	at	the	time	of	its	publication.	Other	documents	may	supersede	this	document.	A	list	of	the	revisions	of	this	technical	report	can	be	found	in	the	
ORM.net	Technical	Recommendations	index	at	<https://gitlab.com/orm-syntax-and-semantics/orm-syntax-and-semantics-docs.git>.	
	
This	document	is	part	of	the	ORM	document	suite.	It	summarizes	the	abstract	syntax	of	the	main	graphical	symbols	used	in	ORM	by	means	of	examples.		The	companion	document	“ORM	Abstract	
Syntax	and	Semantics:	normative	specifications”	formally	defines	the	core	ORM	concepts.	Both	documents	of	the	ORM	document	suite	can	be	found	at		
<https://gitlab.com/orm-syntax-and-semantics/orm-syntax-and-semantics-docs.git>.	
	
This	document	is	published	on	ORM.net	as	a	Proposed	Recommendation.	If	you	wish	to	make	comments	regarding	this	document,	please	send	them	to	<orm-semantics@googlegroups.com>,	
after	having	registered	at	<https://groups.google.com/group/orm-semantics>.	All	comments	are	welcome.	
	
Once	this	document	becomes	an	ORM.net	Recommendation,	it	will	be	a	stable	document	and	may	be	used	as	reference	material	or	cited	from	other	documents.	ORM.net's	role	in	making	the	
Recommendation	is	to	draw	attention	to	the	specification	and	to	promote	its	widespread	deployment.	This	enhances	the	functionality	and	interoperability	of	data	models	based	on	ORM	or	other	fact-
based	modeling	approaches.	

	
Change	History	
	

None.	
	

Construct and Examples Normative Abstract Syntax of Examples Normative Semantics of Examples

	
Signature:	Entity	type	name	
	

	

Signature:	

Entity	Type	name:	Country	

	

Signature:	Value	type	name	
	

Signature:	

Value	Type	name:	CountryCode	

	

Signature:	Predicate	name	
	

Signature:	

Unary	predicate	name:	smokes

Binary	predicate	names:		 wasBornIn,	?speaks?veryWell,		
 reportsTo,	employs

Ternary	predicate	name:	?played?for?

Quaternary	predicate	name:	?in?on?ate?

Alternate	predicate	name:

AlternatePredicate(reportsTo, manages (2 1))

Signature:	Role	name	
	

Signature:	

Role	identifier	for	the	unary	predicate	smokes:		
				smokes.1

Role	identifiers	for	the	binary	predicate	employs:		
				employs.1,	employs.2

Role	names:

RoleNaming(smokes.1, smokes.isSmoker)

RoleNaming(employs.1, employs.employer)

RoleNaming(employs.2, employs.employee)

Unary	fact	type	
	

	

FactType(smokes (Person))

	

∀𝑥.	smokes	𝑥	 → Person	𝑥	

Country CountryCountry oror

orCountryCode CountryCode CountryCodeor

smokes

… played … for ... … in … on … ate ...

… speaks … very wellwas born in

Person
smokes

[isSmoker]

Construct and Examples Normative Abstract Syntax of Examples Normative Semantics of Examples

Binary	fact	type	
	

	

FactType(wasBornIn (Person Country))

FactType(employs (Company Person))

FactType(made (Company Product))

FactType(drives (Person Car))

FactType(reportsTo (Person Person))

	

	

∀𝑥𝑦.	wasBornIn	𝑥	𝑦	 → Person	𝑥	&	Country	𝑦	

∀𝑥𝑦.	employs	𝑥	𝑦	 → Company	𝑥	&	Person	𝑦	

∀𝑥𝑦.	made	𝑥	𝑦	 → Company	𝑥	&	Product	𝑦	

∀𝑥𝑦.	drives	𝑥	𝑦	 → Person	𝑥	&	Car	𝑦	

∀𝑥𝑦.	reportsTo	𝑥	𝑦	 → Person	𝑥	&	Person	𝑦	

Ternary	fact	type	
	

	

FactType(?played?for?
 (Person Sport Country))

FactType(?introduced?to?
 (Person Person Person))

FactType(?ate?on? (Cat Food Date))

	

	

∀𝑥𝑦𝑧.	?played?for?	𝑥	𝑦	𝑧	
→ Person	𝑥	&	Sport	𝑦	&	Country	𝑧	

∀𝑥𝑦𝑧.	?introduced?to?	𝑥	𝑦	𝑧	
→ Person	𝑥	&	Person	𝑦	&	Person	𝑧	

∀𝑥𝑦𝑧.	?ate?on?	𝑥	𝑦	𝑧	 → Cat	𝑥	&	Food	𝑦	&	Date	𝑧	

Quaternary	fact	type	
	

	

FactType(?in?on?ate? (Person City Date Food))	

	

∀𝑥𝑦𝑧𝑘.	?in?on?ate?	𝑥	𝑦	𝑧	𝑘
→ Person	𝑥	&	City	𝑦	&	Date	𝑧	&	Food	𝑘	

Objectification	
	

FactType(enrolledIn (Student Course))

Objectifies(Enrolment enrolledIn)

FactType(resultedIn (Enrolment Grade))	

	

∀𝑥𝑦.	enrolledIn	𝑥	𝑦	 → Student	𝑥	&	Course	𝑦	

∀𝑥𝑦.	enrolledIn	𝑥	𝑦	 ↔ Enrolment	\ℓenrolledIn(𝑥	𝑦)^	

∀𝑥𝑦.	resultedIn	𝑥	𝑦	 → Enrolment	𝑥	&	Grade	𝑦	

Person
was born in

Country

Car

Person

Person

reports to / manages

[employer]

Person
employs

Company
[employee]

made

Product

drives

[player]
Person Country

Sport

… played … for ...

Person

… introduced … to ...

Food Date

Cat

[Cat] ate [Food] on [Date]

Cat

Food

Date
… ate … on ...

… in … on .. ate ...
Person

City Date

Food

Student
enrolled in

“Enrolment !”

Course

resulted in
Grade

Construct and Examples Normative Abstract Syntax of Examples Normative Semantics of Examples

UCs	on	a	binary	fact	type	
	

Unique(isOf.1)

Unique(wasBornIn.1)

Unique(speaks.1 speaks.2)

Unique(isPresidentOf.1)

Unique(isPresidentOf.2)	

	

∀𝑥!𝑥".	isOf	𝑥!𝑥" 	→ 	∃#!𝑦.	isOf	𝑥!𝑦	

∀𝑥!𝑥".	wasBornIn	𝑥!𝑥" → ∃#!𝑦.	wasBornIn	𝑥!𝑦	

∀𝑥!𝑥".	speaks	𝑥!𝑥" → speaks	𝑥!𝑥"	

∀𝑥!𝑥".	isPresidentOf	𝑥!𝑥" 	→ 	∃#!𝑦.	ispresidentOf	𝑥!𝑦		

∀𝑥!𝑥".	isPresidentOf	𝑥!𝑥" 	→ 	∃#!𝑦.	isPresidentOf	𝑦	𝑥"	

UCs	on	ternaries	
	

Unique(?got?in?.1 ?got?in?.3)

Unique(?got?in?.2 ?got?in?.3)

Unique(?played?for?.1 ?played?for?.2
 ?played?for?.3)	

	

∀𝑥!𝑥"𝑥$.	?got?in?	𝑥!𝑥"𝑥$ 	→ 	∃#!𝑦.	?got?in?	𝑥!𝑦	𝑥$	

∀𝑥!𝑥"𝑥$.	?got?in?	𝑥!𝑥"𝑥$ 	→ 	∃#!𝑦.	?got?in?	𝑦	𝑥"𝑥$	

	

	

∀𝑥!𝑥"𝑥$.	?played?for?	𝑥!𝑥"𝑥$ 	→ 	?played?for?	𝑥!𝑥"𝑥$	

Simple	mandatory	role	constraint	
	

Mandatory(Person wasBornIn.1)

	

	

∀𝑥.	Person	𝑥	 → 	∃𝑦.	wasBornIn	𝑥𝑦	

Inclusive-or	constraint

Mandatory(Visitor
 hasPassport.1 hasDriverLicence.1)	

	

∀𝑥.	Visitor	𝑥	 → 	 (∃𝑦.	hasPassport	𝑥𝑦) ∨	
																																						(∃𝑦.	hasDriverLicence	𝑥𝑦)	

Preferred	internal	UC	
	

Identification(Country has.1 (has.2))

∀𝑥!𝑥".	has	𝑥!𝑥" 	→ 	∃#!𝑦.	has	𝑥!𝑦
∀𝑥.	Country	𝑥	 → 	∃𝑦.	has	𝑥𝑦
∀𝑥!𝑥".	has	𝑥!𝑥" 	→ 	∃#!𝑦.	has	𝑦	𝑥"
well-founded(has)

Person
was born in

CountryGender
is of

PersonLanguage
speaks is president of

Country

Team

Place

Competition
… got … in ...

Person Country

Sport

… played … for ...

Person
was born in

Country

Person
was born in

Country

Visitor

has
Passport

has
DriverLicence

Country CountryCode
has / is of

Construct and Examples Normative Abstract Syntax of Examples Normative Semantics of Examples

External	UC	
	

ExternalIdentification(State
 (hasStateCode.2 isIn.2))

ExternalUnique(hasStateName.2 isIn.2)
	

	
∀𝑥!𝑥"𝑥$.	JP1	𝑥!𝑥"𝑥$ ↔ ∃𝑦.	hasStateCode		𝑥$𝑥!	&	isIn	𝑥$𝑥"	
∀𝑥!𝑥"𝑥$.	JP1	𝑥!𝑥"𝑥$ 	→ 	∃#!𝑦.	JP1	𝑥!𝑥"𝑦
∀𝑥!𝑥"𝑥$.	JP1	𝑥!𝑥"𝑥$ 	→ 	∃#!𝑦!𝑦".	JP1	𝑦!𝑦"𝑥$
∀𝑥.	State	𝑥	 → 	∃𝑦!𝑦".	K1	𝑦!𝑦"	𝑥
well-founded(hasStateCode ∪	isIn)

∀𝑥!𝑥"𝑥$.	JP2	𝑥!𝑥"𝑥$ ↔ hasStateName		𝑥$	𝑥!	&	isIn	𝑥$	𝑥"	
∀𝑥!𝑥"𝑥$.	JP2	𝑥!𝑥"𝑥$ 	→ 	∃#!𝑦.	JP2	𝑥!𝑥"𝑦

Object	type	value	constraint	
	

ValuesOf(GenderCode (M F))

…

	

	

∀𝑥.	GenderCode	𝑥	 → 	𝑥 = M	 ∨ 	𝑥 = F	

Role	value	constraint	

	

ValuesOf(has.2 (0 … 140))	

	

∀𝑥!𝑥".	has	𝑥!𝑥" →	𝑥" = 0	 ∨ …	∨	𝑥" = 140	

Subset	constraint	

	

Subset((smokes.1 isCancerProne.1))

Subset((?for?obtained?.1 enrolledIn.1)
 (?for?obtained?.2 enrolledIn.2))	

	

∀𝑥.	smokes	𝑥	 → isCancerProne	𝑥	

∀𝑥!𝑥"𝑥$.	?for?obtained?𝑥!𝑥"𝑥$ 	→ 	enrolledIn	𝑦!𝑥"	

State

has
StateCode

is in
Country
(.code)

has
StateName

Gender
(.code)

Rating
(.nr){‘M’, ‘F’} {1, 2, 3, 4, 5, 6, 7}

Rating
(.nr)

Grade
(.code)

{1..7} {‘A’..‘F’}

Age
(y:)

{0..}

PassScore
(%)

{50..100}

NegativeInt

{..-1}

PositiveScore
(%)

{(0..100}

NegativeTemperature
(oC:)

{-273.15..0)}

ExtremeTemperature
(oC:) SQLchar{-100..-20,

 40..100}

{‘a’..’z’,
 ‘A’..’Z’,
 ‘0’..’9',
 ‘_’}

Age
(y:)

Person
(.name)

has
{0..}

{0..140}

Person

is cancer prone

smokes

enrolled in

Course

… for ... obtained ...

Grade

Construct and Examples Normative Abstract Syntax of Examples Normative Semantics of Examples

Join	subset	constraint	

	

JoinPath(P (speaks.1 speaks.2)
 (isOftenUsedIn.1 isOftenUsedIn.2))

Subset((servesIn.1 P.1)(servesIn.2 P.2))	

	

∀𝑥!𝑥".	P	𝑥!𝑥" ↔ ∃𝑦.	speaks		𝑥!𝑦	&	isOftenUsedIn	𝑦	𝑥"		
	

∀𝑥𝑦.	servesIn	𝑥𝑦	 → P𝑥𝑦	

Exclusion	constraint	

	

Exclusive((isWidowed.1 isMarried.1))

Exclusive((reviewed.1 authored.1)
 (reviewed.2 authored.2))	

	

∀𝑥.	isWidowed	𝑥	 → ~isMarried	𝑥	

∀𝑥𝑦.	reviewed	𝑥𝑦	 → ~authored	𝑥𝑦	

Equality	constraint	
	

	

Equal((hasSystolic.1 hasDiasystolic.1))

	

	

(∀𝑥𝑦.	hasSystolic	𝑥𝑦	 → ∃𝑧.	hasDiasystolic	𝑥𝑧) ∧		
(∀𝑥𝑦.	hasDiasystolic	𝑥𝑦	 → ∃𝑧.	hasSystolic	𝑥𝑧)	

Subtyping	

Subtype(Lecturer Employee)

Subtype(Employee Person)

Subtype(Student Person)

Subtype(StudentEmployee Student)

Subtype(StudentEmployee Employee)

∀𝑥.	Lecturer	𝑥	 → Employee	𝑥

∀𝑥.	Employee	𝑥	 → Person	𝑥

∀𝑥.	Student	𝑥	 → Person	𝑥

∀𝑥.	StudentEmployee	𝑥	 → Student	𝑥

∀𝑥.	StudentEmployee	𝑥	 → Employee	𝑥

speaks
Language
(.name)

is often used in

Advisor
(.nr)

serves in

Country
(.code)

Person

authored

Book

reviewed

is married

is widowed

Patient

has systolic-

BloodPressure

has diasystolic-

Student
(.nr)

Person
(.nr)

Student
Employee

Employee
(.nr)

Lecturer

Construct and Examples Normative Abstract Syntax of Examples Normative Semantics of Examples

Subtyping	constraints	
	

	

	

ExclusiveSubtypes((Dog Cat) Animal)

ExhaustiveSubtypes((Player Coach) TeamMember)

ExclusiveSubtypes((MalePerson FemalePerson)
 Person)
ExhaustiveSubtypes((MalePerson FemalePerson)
 Person)	

	

(∀𝑥.	Dog	𝑥 → Animal	𝑥	&	~Cat	𝑥)	&	(∀𝑥.	Cat	𝑥	 → 	Animal	𝑥)	

(∀𝑥.	Player	𝑥	 → 	TeamMember	𝑥)	&	
				(∀𝑥.	Coach	𝑥	 → 	TeamMember	𝑥)	&		
				(∀𝑥.TeamMember	𝑥	 → 	Coach	𝑥	 ∨ 	Player	𝑥)	

(∀𝑥.	MalePerson	𝑥 → Person	𝑥	&	~FemalePerson	𝑥)	&		
				(∀𝑥.	Femaleperson	𝑥	 → 	Person	𝑥)	
(∀𝑥.	MalePerson	𝑥	 → 	Person	𝑥)	&	
				(∀𝑥.	FemalePerson	𝑥	 → 	Person	𝑥)	&		
				(∀𝑥.Person	𝑥	 → 	FemalePerson	𝑥	 ∨ 	MalePerson	𝑥)	

Internal	frequency	constraint	

	

Frequency(isAMemberOf.2 (12))

Frequency(isOn.2 (4, 7))

Frequency(reviews.1 (..5))

Frequency(reviews.2 (2..))

Frequency(?in?hadStaffOf?in?.1
 ?in?hadStaffOf?in?.2 (2))

	

∀𝑥!𝑥".	isAMemberOf	𝑥!𝑥" 	→ 	∃#!"𝑦.	isAMemberOf	𝑥!𝑦	

∀𝑥!𝑥".	isOn	𝑥!𝑥" 	→ 	∃%&,()𝑦.	isOn	𝑥!𝑦	

∀𝑥!𝑥".	reviews	𝑥!𝑥" 	→ 	∃(*𝑦.	reviews	𝑦𝑥"	

∀𝑥!𝑥".	reviews	𝑥!𝑥" 	→ 	∃%"𝑦.	reviews	𝑥!𝑦	

	

	

∀𝑥!𝑥"𝑥$𝑥&.	?in?hadStaffOf?in?	𝑥!𝑥"𝑥$𝑥& 	→		
																							∃#"𝑦!𝑦".	?in?hadStaffOf?in?	𝑦!𝑦"𝑥$𝑥&	

External	frequency	constraint	

	

ExternalFrequency(isBy.2 isIn.2 (..2))

	

	

∀𝑥!𝑥"𝑥$.	JP	𝑥!𝑥"𝑥$ ↔ ∃𝑦.	isBy		𝑥$𝑥!	&	isIn	𝑥$𝑥"	

∀𝑥!𝑥"𝑥$.	JP	𝑥!𝑥"𝑥$ 	→ 	∃("𝑦!𝑦".	JP	𝑦!𝑦"𝑥$	

Value-comparison	constraint	
	

	

≥(endedOn.2 startedOn.2)

	

	

∀𝑥!𝑥"𝑥$.	JP	𝑥!𝑥"𝑥$ ↔ ∃𝑦.	startedOn		𝑥$𝑥!	&	endedOn	𝑥$𝑥"	

∀𝑥!𝑥"𝑥$𝑦!𝑦"𝑦$. 𝑃𝑥!𝑥"𝑥$	&	𝑃𝑦!𝑦"𝑦$ → 𝛾Date(𝑥") ≥ 𝛾Date(𝑦!)	

Animal

Dog Cat

Person

Male
Person

Female
Person

TeamMember

Player Coach

Department

Gender

Quantity

Year

… in … had staff of … in ...

2

Person
is a member of

Jury
12

Expert

is on / includes
Panel

reviews / is reviewed by

Paper

4..7
 £ 5 ≥ 2

Enrollment

is by
Student

is in
Course

£ 2

Project

started on

Date

ended on

≥

[enddate]

[startdate]> <£ ≥ e.g.

Construct and Examples Normative Abstract Syntax of Examples Normative Semantics of Examples

Object	cardinality	constraint	
	

	

	

TypeCardinality(President (0, 1))

	

∃(!𝑥.	President	𝑥	

Role	cardinality	constraint	

	

RoleCardinality(isThePresidentOf (0, 1))

	

∃(!𝑥.	isThePresidentOf	𝑥	

Ring	constraints	
	

	

LocallyReflexive(P.1 P.2)

etc.

∀𝑥!𝑥".		P𝑥!𝑥" 	→ 	P𝑥!𝑥!

etc.

UN_SecurityCouncilMember

#{0, 5..15}

President

≤ 1

Politician
is the president

£ 1

Irreflexive

Asymmetric

Antisymmetric

Intransitive

Strongly Intransitive

Acyclic

Asymmetric + Intransitive

Acyclic + Intransitive

Acyclic + Strongly Intransitive

Symmetric + Irreflexive

etc.

A Reflexive (locally)

Symmetric

Transitive

Derivation	Rules	
	

SubTypeRule(Smoker (Person ∧ smokes))

∀𝑥.	Smoker	𝑥	 ↔ 	Person	𝑥	&	smokes	𝑥

	
	
	

	

SubTypeRule(Resident
 (Person ∧ (isAResidentCitizen ∨
 isAResidentAlien))

SubTypeRule(SelfTransporter
 (Person ∧
 ((drives.1 ➤ [drives.2 ⋈ Car]) ∨
 (rides.1 ➤ [rides.2 ⋈ Motorcycle]))))

∀𝑥.	Resident	𝑥	 ↔		
							Person	𝑥	&	(isAResidentCitizen	𝑥		∨	
 isAResidentAlien	𝑥)

∀𝑥.	SelfTransporter	𝑥	 ↔	
										(Person	𝑥	&
														((∃𝑦.	drives	𝑥𝑦	&	Car	𝑦)	∨	
																(∃𝑦.	rides	𝑥𝑦	&	Motorcycle	𝑦)))

	
	
	

	

SubTypeRule(NonSmoker (Person ∖ smokes))

SubTypeRule(NonDriver
 (Person ∖ (drives.1 ➤ [drives.2 ⋈ Car]))

SubTypeRule(TeeTotaller
 (Person ∖
 (drinks.1 ➤ [drinks.2 ⋈
 (Beverage ∧ isAlcoholic)]))

∀𝑥.	NonSmoker	𝑥	 ↔ 	Person	𝑥	&	~smokes	𝑥

∀𝑥.	NonDriver	𝑥	 ↔	
										(Person	𝑥	&	~(∃𝑦.	drives	𝑥𝑦	&	Car	𝑦)

∀𝑥.	TeeTotaller	𝑥	 ↔	
										(Person	𝑥	&		
														~(∃𝑦.	drinks	𝑥𝑦	&		
																										Beverage	𝑦	&	isAlcoholic	𝑦))

	
	
	

	

FactTypeRule(isATypicalSportsPerson
 (Person ∧ ?played?for?.1 ➤
 [?played?for?.2 ⋈ (Sport ∧ isPopular)]
 [?played?for?.3 ⋈ (Country ∧ isLarge)]))

∀𝑥.isATypicalSportsPerson	𝑥	 ↔	
								(Person	𝑥	&		
												∃𝑦𝑧.	?played?for?	𝑥𝑦𝑧	&	Sport	𝑦	&	isAlcoholic	𝑦	&	
																																																																					Country	𝑧	&	isLarge	𝑧)

Person
(.Nr)

smokes

has
PersonName

Smoker *

* Each Smoker is a Person who smokes.

Person
(.Nr)

Car
(VIN)

Motorcycle
(VIN)

drives

rides

is a resident citizen

is a resident alien

is a non-resident

Resident * SelfTransporter *

* Each Resident is a Person who is a resident citizen
or is a resident alien.

* Each SelfTransporter is a Person who drives a Car
 or rides a Motorcycle.

Person
(.Nr)

Car
(VIN)

Beverage
(.Name)

drives

drinks

NonSmoker * NonDriver *

* Each NonSmoker is a Person where it is not true that that Person smokes.

* Each Teetotaller is a Person who drinks no Beverage that is alcoholic.

is alcoholic

has
PersonName

smokes

Teetotaller *

* Each NonDriver is a Person who drives no Car.

Person
(.Nr)

Sport
(.Name)

Country
(.Code)… played … for ...

is popular

is a typical sportsperson * is large

* Person is a typical sportsperson iff
 that Person played a Sport that is popular for a Country that is large.

	

	

FactTypeRule(livesInCountry
 (Person ∧ livesInState.1 ➤
 [livesInState.2 ⋈ (State ∧ isIn.1 ➤
 [isIn.2 ⋈ (Country ∧ ?x)])])
 (Country ∧ ?x))

∀𝑥𝑦.	livesInCountry	𝑥𝑦	 ↔	
												(Person	𝑥	&		
																∃𝑧.	livesInState	𝑥𝑧	&	State	𝑧	&		
																							isIn	𝑧𝑦	&	Country	𝑦)

	
	

	

FactTypeRule(canFullyCommunicateIn
 (Person ∧
 (canSpeak.1 ➤ [canSpeak.2	⋈	(Language ∧ ?x)]) ∧
 (canWrite.1 ➤ [canwrite.2	⋈	(Language ∧ ?x)]))
 (Language ∧ ?x))

FactTypeRule(canCommunicateIn
 (Person ∧
 ((canSpeak.1	➤	[canSpeak.2	⋈	(Language ∧ ?x)]) ∨
 (canWrite.1	➤	[canwrite.2	⋈	(Language ∧ ?x)])))
 (Language ∧ ?x))

∀𝑥𝑦.	canFullyCommunicateIn	𝑥𝑦	 ↔		
									(Person	𝑥	&		
 canSpeak	𝑥𝑦	&		
											canWrite	𝑥𝑦	&		
											Language	𝑦)

∀𝑥𝑦.	canFullyCommunicateIn	𝑥𝑦	 ↔		
									(Person	𝑥	&		
 (canSpeak	𝑥𝑦	∨		
														canWrite	𝑥𝑦)	&		
											Language	𝑦)

	
	

	

FactTypeRule(soldIn
 (CarModel ∧ ?x)
 (Region ∧
 (livesIn.2	➤	[livesIn.1	⋈	Customer ∧
 (bought.1	➤	[bought.2	⋈	Car ∧
 (isOf.1	➤	[isOf.2	⋈	(CarModel ∧ ?x)])])])))

 FactTypeRule(?in?bought?
 (Customer ∧
 (livesIn.1 ➤ [livesIn.2 ⋈ (Region ∧ ?x)]) ∧
 (bought.1 ➤ [bought.2 ⋈ (Car ∧
 (isOf.1 ➤ [isOf.2 ⋈ CarModel ∧ ?y]))]))
 (Region ∧ ?x)
 (CarModel ∧ ?y))

∀𝑥𝑦.	soldIn	𝑥𝑦	 ↔	
										(CarModel	𝑥	&		
												Region	𝑦	&
																	∃𝑧.	livesIn	𝑧𝑦	&	Customer	𝑧	&	
																								∃𝑘.	bought	𝑧𝑘	&	Car	𝑘	&		
																															isOf	𝑘𝑥)

∀𝑥𝑦.	?in?bought?	𝑥𝑦𝑧	 ↔	
										(Customer	𝑥	&		
												livesIn	𝑥𝑦	&	Region	𝑦	&	
												∃𝑘.	bought	𝑥𝑘	&	Car	𝑘	&		
																															isOf	𝑘𝑧	&	CarModel	𝑧)

Person
(.Nr)

State

StateCode

Country
(.Code)

lives in

has

is in
lives in *

* Person lives in Country iff
 that Person lives in a State that is in that Country.

Person
(.Nr)

Language
(.Name)

can speak

can write in

can fully communicate in *

can communicate in *

* Person can fully communicate in Language iff
 that Person can speak that Language

 and can write in that Language.

* Person can communicate in Language iff
 that Person can speak that Language

 or can write in that Language.

Car
(VIN)

Customer
(.Nr)

CarModel
(.Name)

Region
(.Name)

bought is of

lives in sold in *

… in … bought … *

* CarModel sold in Region iff
 some Customer lives in that Region

 and bought a Car that is of that CarModel.

* Customer in Region bought CarModel iff
 that Customer lives in that Region

 and bought a Car that is of that CarModel.

