ORM Normative Abstract Syntax and Semantics: non-normative glossary

ORM. net Proposed Recommendation

Version: Public BETA 2-9 March 2020
Editors: Enrico Franconi, Terry Halpin

Abstract

Object-Role Modeling (ORM) is a rigorous approach to modeling and querying at the conceptual level the information semantics of arbitrary domains. This glossary document lists key terms and symbols used in ORM, and briefly explains their meaning by means of examples. It shows examples of the main graphical conceptual model constructs - namely declarations, constraints, and derivation ules - together with their corresponding abstract syntactic expressions, and their semantics specified as closed first-order logic formulas. This non-normative document makes use of the definitions specified in the normative document defining the abstract syntax and formal semantics of ORM conceptual models. The semantics of an ORM conceptual model is defined by transforming the model to first-order logic axioms, whose finite models denote the legal abstract information structures of the conceptual specification.

Status of this Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of the revisions of this technical report can be found in the ORM. net Technical Recommendations index at https://gitlab.com/orm-syntax-and-semantics/orm-syntax-and-semantics-docs.git.

This document is part of the ORM document suite. It summarizes the abstract syntax of the main graphical symbols used in ORM by means of examples. The companion document "ORM Abstract Syntax and Semantics: normative specifications" formally defines the core ORM concepts. Both documents of the ORM document suite can be found at
https://gitlab.com/orm-syntax-and-semantics/orm-syntax-and-semantics-docs.git.
This document is published on ORM. net as a Proposed Recommendation. If you wish to make comments regarding this document, please send them to orm-semantics@googlegroups.com after having registered at https://groups.google.com/group/orm-semantics. All comments are welcome.

Once this document becomes an ORM. net Recommendation, it will be a stable document and may be used as reference material or cited from other documents. ORM. net's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of data models based on ORM or other factbased modeling approaches.

Change History

None.

Construct and Examples

Signature: Entity type name

Signature: Value type name

Signature: Predicate name

Signature: Role name

 [employer]

Signature:

Entity Type name: Country

Signature:

Value Type name: CountryCode

Signature:

Unary predicate name: smokes
Binary predicate names: wasBornIn, ?speaks?veryWell, reportsTo, employs

Ternary predicate name: ?played? for?
Quaternary predicate name: ?in?on?ate?
Alternate predicate name:
AlternatePredicate(reportsTo, manages (2 1))

Signature:

Role identifier for the unary predicate smokes: smokes. 1
Role identifiers for the binary predicate employs: employs.1, employs. 2
Role names:
RoleNaming(smokes.1, smokes.isSmoker)
RoleNaming(employs.1, employs.employer)
RoleNaming(employs.2, employs.employee)

Unary fact type

Binary fact type

FactType(wasBornIn (Person Country))
FactType(employs (Company Person))

FactType(made (Company Product))
FactType(drives (Person Car))
FactType(reportsTo (Person Person))

FactType(?played?for? (Person Sport Country))

FactType(?introduced?to?
(Person Person Person))

FactType(?ate?on? (Cat Food Date))

FactType(?in?on?ate? (Person City Date Food))

Objectification

FactType(enrolledIn (Student Course))
Objectifies(Enrolment enrolledIn)
FactType(resultedIn (Enrolment Grade))
$\forall x y z k$. ?in?on?ate? $x y z k$
\rightarrow Person x \& City y \& Date $z \&$ Food k

```
\forally.wasBornIn x y -> Person }x\mathrm{ & Country y
*y. employs x y Company x & Person y
\forallxy.made x y Company x & Product y
\forally.drives }xy->\mathrm{ Person }x&\mathrm{ Car }
\forally.reportsTo }xy->\mathrm{ Person }x&\mathrm{ Person }
```

```
\forallxyz. ?played?for? x yz
    Person x & Sport y & Country z
```

$\forall x y z$. ?introduced?to? $x y z$
\rightarrow Person x \& Person y \& Person z
$\forall x y z$. ?ate? on? $x y z \rightarrow \operatorname{Cat} x \&$ Food $y \&$ Date z

```
\forallxy. enrolledIn x y S Student x & Course y
\forally. enrolledIn x y Enrolment ( }\ell\mathrm{ enrolledIn ( }xy\mathrm{ ))
\forallxy.resultedIn x y -> Enrolment x & Grade y
```


UCs on a binary fact type

Unique(isOf.1)
Unique(wasBornIn.1)
Unique(speaks. 1 speaks.2)
Unique(isPresidentOf.1)
Unique(isPresidentOf. 2)

Unique(?got?in?. 1 ?got?in?.3)
Unique(?got?in?. 2 ?got?in?. 3

Unique(?played?for?. 1 ?played?for?. 2
?played?for?.3)

Simple mandatory role constraint

Inclusive-or constraint

Preferred internal UC

$\forall x_{1} x_{2}$. isof $x_{1} x_{2} \rightarrow \exists^{=1} y$. isOf $x_{1} y$
$\forall x_{1} x_{2}$. wasBornIn $x_{1} x_{2} \rightarrow \exists^{=1} y$. wasBornIn $x_{1} y$
$\forall x_{1} x_{2}$. speaks $x_{1} x_{2} \rightarrow$ speaks $x_{1} x_{2}$
$\forall x_{1} x_{2}$. isPresidentof $x_{1} x_{2} \rightarrow \exists^{=1} y$. ispresidentof $x_{1} y$
$\forall x_{1} x_{2}$. isPresidentof $x_{1} x_{2} \rightarrow \exists^{=1} y$. isPresidentof $y x_{2}$
$\forall x_{1} x_{2} x_{3}$. ? got?in? $x_{1} x_{2} x_{3} \rightarrow \exists^{=1} y$. ? got?in? $x_{1} y x_{3}$
$\forall x_{1} x_{2} x_{3}$. ? got?in? $x_{1} x_{2} x_{3} \rightarrow \exists^{=1} y$. ?got?in? y $x_{2} x_{3}$
$\forall x_{1} x_{2} x_{3}$. ?played?for? $x_{1} x_{2} x_{3} \rightarrow$?played?for? $x_{1} x_{2} x_{3}$
$\forall x$. Person $x \rightarrow \exists y$. wasBornIn $x y$
$\forall x$. Visitor $x \rightarrow$ ($\exists y$. hasPassport $x y) \vee$
($\exists y$. hasDriverLicence $x y$)
$\forall x_{1} x_{2}$. has $x_{1} x_{2} \rightarrow \exists^{=1} y$. has $x_{1} y$
$\forall x$. Country $x \rightarrow \exists y$. has $x y$
$\forall x_{1} x_{2}$. has $x_{1} x_{2} \rightarrow \exists^{=1} y$. has $y x_{2}$
well-founded(has)

External UC

Object type value constraint

$$
\begin{aligned}
& { }^{\circ} \mathrm{Z} \text { ' }
\end{aligned}
$$

...

ValuesOf(GenderCode (M F))

ExternalIdentification(State

(hasStateCode. 2 isIn.2)

ExternalUnique(hasStateName. 2 isIn.2)

Role value constraint

\{0..140\}

Subset constraint

Subset((smokes.1 isCancerProne.1))
Subset((?for?obtained?.1 enrolledIn.1) (?for?obtained?. 2 enrolledIn.2))
$\forall x_{1} x_{2} x_{3}$. JP1 $x_{1} x_{2} x_{3} \leftrightarrow \exists y$. hasStateCode $x_{3} x_{1} \&$ isIn $x_{3} x_{2}$ $\forall x_{1} x_{2} x_{3}$. JP1 $x_{1} x_{2} x_{3} \rightarrow \exists^{=1} y$. JP1 $x_{1} x_{2} y$
$\forall x_{1} x_{2} x_{3}$. JP1 $x_{1} x_{2} x_{3} \rightarrow \exists^{=1} y_{1} y_{2}$.JP $1 y_{1} y_{2} x_{3}$
$\forall x$. State $x \rightarrow \exists y_{1} y_{2}$. K1 $y_{1} y_{2} x$
well-founded(hasStateCode U isIn)
$\forall x_{1} x_{2} x_{3}$. JP2 $x_{1} x_{2} x_{3} \leftrightarrow$ hasStateName $x_{3} x_{1} \&$ isIn $x_{3} x_{2}$ $\forall x_{1} x_{2} x_{3}$. JP2 $x_{1} x_{2} x_{3} \rightarrow \exists^{=1} y$. JP2 $x_{1} x_{2} y$
$\forall x$. GenderCode $x \rightarrow x=\mathrm{M} \vee x=\mathrm{F}$

$$
\forall x_{1} x_{2} . \text { has } x_{1} x_{2} \rightarrow x_{2}=0 \vee \ldots \vee x_{2}=140
$$

$\forall x$. smokes $x \rightarrow$ isCancerProne x
$\forall x_{1} x_{2} x_{3}$. ?for?obtained? $x_{1} x_{2} x_{3} \rightarrow$ enrolledIn $y_{1} x_{2}$

Join subset constraint

Exclusion constraint

Equality constraint

Subtype(Lecturer Employee)

Subtype(Employee Person)
Subtype(Student Person)
Subtype(StudentEmployee Student)
Subtype(StudentEmployee Employee)

Subtyping

Exclusive((isWidowed. 1 isMarried.1))

Exclusive((reviewed. 1 authored.1)
(reviewed. 2 authored.2))

JoinPath(P (speaks. 1 speaks.2)
 (isOftenUsedIn. 1 isOftenUsedIn.2))

Subset((servesIn.1 P.1)(servesIn.2 P.2))
$\forall x_{1} x_{2}$. P $x_{1} x_{2} \leftrightarrow \exists y$. speaks $x_{1} y \&$ isOftenUsedIn $y x_{2}$
$\forall x y$. servesIn $x y \rightarrow \mathrm{P} x y$
\forall. isWidowed $x \rightarrow \sim$ isMarried x
$\forall x y$. reviewed $x y \rightarrow \sim$ authored $x y$

[^0]$\forall x$. Lecturer $x \rightarrow$ Employee x
$\forall x$. Employee $x \rightarrow$ Person x
$\forall x$. Student $x \rightarrow$ Person x
$\forall x$. StudentEmployee $x \rightarrow$ Student x
$\forall x$. StudentEmployee $x \rightarrow$ Employee x

Subtyping constraints

ExclusiveSubtypes((Dog Cat) Animal)
ExhaustiveSubtypes((Player Coach) TeamMember)

ExclusiveSubtypes((MalePerson FemalePerson) Person)
ExhaustiveSubtypes((MalePerson FemalePerson) Person)
$(\forall x . \operatorname{Dog} x \rightarrow$ Animal $x \& \sim \operatorname{Cat} x) \&(\forall x$. Cat $x \rightarrow$ Animal $x)$
$(\forall x$. Player $x \rightarrow$ TeamMember $x) \&$
$(\forall x . \operatorname{Coach} x \rightarrow$ TeamMember $x) \&$
($\forall x$.TeamMember $x \rightarrow$ Coach $x \vee$ Player x)
$(\forall x$. MalePerson $x \rightarrow$ Person $x \& \sim$ FemalePerson $x) \&$
($\forall x$. Femaleperson $x \rightarrow$ Person x)
($\forall x$. MalePerson $x \rightarrow$ Person x) \&
($\forall x$. FemalePerson $x \rightarrow$ Person x) \&
$(\forall x$.Person $x \rightarrow$ FemalePerson $x \vee$ MalePerson x)
$\forall x_{1} x_{2}$. isAMemberof $x_{1} x_{2} \rightarrow \exists^{=12} y$. isAMemberOf $x_{1} y$
$\forall x_{1} x_{2}$. ison $x_{1} x_{2} \rightarrow \exists^{\geq 4, \leq 7} y$. ison $x_{1} y$
$\forall x_{1} x_{2}$. reviews $x_{1} x_{2} \rightarrow \exists^{\leq 5} y$. reviews $y x_{2}$
$\forall x_{1} x_{2}$. reviews $x_{1} x_{2} \rightarrow \exists^{\geq 2} y$. reviews $x_{1} y$
$\forall x_{1} x_{2} x_{3} x_{4}$. ?in?hadStaffof?in? $x_{1} x_{2} x_{3} x_{4} \rightarrow$ $\exists^{=2} y_{1} y_{2}$.?in?hadStaffof?in? $y_{1} y_{2} x_{3} x_{4}$

$$
\begin{aligned}
& \forall x_{1} x_{2} x_{3} . \text { JP } x_{1} x_{2} x_{3} \leftrightarrow \exists y . \text { isBy } x_{3} x_{1} \& \text { isIn } x_{3} x_{2} \\
& \forall x_{1} x_{2} x_{3} . J P ~ x_{1} x_{2} x_{3} \rightarrow \exists^{\leq 2} y_{1} y_{2} . J P y_{1} y_{2} x_{3}
\end{aligned}
$$

$\forall x_{1} x_{2} x_{3}$. JP $x_{1} x_{2} x_{3} \leftrightarrow \exists y$. startedOn $x_{3} x_{1} \&$ endedOn $x_{3} x_{2}$
$\forall x_{1} x_{2} x_{3} y_{1} y_{2} y_{3} . P x_{1} x_{2} x_{3} \& P y_{1} y_{2} y_{3} \rightarrow \gamma_{\text {Date }}\left(x_{2}\right) \geq \gamma_{\text {Date }}\left(y_{1}\right)$

Object cardinality constraint
$\begin{array}{cc}\# \leq 1 & \#\{0,5 . .15\} \\ \text { President } \quad \text { UN_SecurityCouncilMember }\end{array}$

Role cardinality constraint
Politician is the president

Ring constraints

Irreflexive
Asymmetric
\bigcirc Reflexive (locally)SymmetricAntisymmetric
\&) Intransitive A Transitive
\& Strongly Intransitive
Acyclic
(4) Asymmetric + Intransitive
(4) Acyclic + Intransitive
(4) Acyclic + Strongly Intransitive
(3) Symmetric + Irreflexive etc.

TypeCardinality(President (0, 1))

RoleCardinality(isThePresidentOf (0, 1))

LocallyReflexive(P.1 P.2)

etc.
$\exists^{\leq 1} x$. President x
$\exists^{\leq 1} x$. isThePresidentOf x
$\forall x_{1} x_{2} . \mathrm{P} x_{1} x_{2} \rightarrow \mathrm{P} x_{1} x_{1}$
etc.

* Each Smoker is a Person who smokes.

* Each NonSmoker is a Person where it is not true that that Person smokes.
* Each NonDriver is a Person who drives no Car.
* Each Teetotaller is a Person who drinks no Beverage that is alcoholic.

* Person is a typical sportsperson iff
that Person played a Sport that is popular for a Country that is large.

SubTypeRule(Resident
(Person \wedge (isAResidentCitizen \vee isAResidentAlien))
SubTypeRule(SelfTransporter
(Person \wedge
((drives. $1>$ [drives. $2 \bowtie$ Car]) \vee
$($ rides. $1>$ [rides. $2 \bowtie$ Motorcycle]))))

SubTypeRule(NonSmoker (Person \smokes))

SubTypeRule(NonDriver
(Person \ (drives. $1>$ [drives. $2 \bowtie$ Car]))

SubTypeRule(TeeTotaller
 (Person \}
 (drinks. $1>$ [drinks. $2 \bowtie$

(Beverage \wedge isAlcoholic)]))
$\forall x$. Resident $x \leftrightarrow$
Person $x \&(i s A R e s i d e n t C i t i z e n ~ x \vee$ isAResidentAlien x)
$\forall x$. SelfTransporter $x \leftrightarrow$
(Person x \&
$((\exists y$. drives $x y \& \operatorname{Car} y) \vee$
($\exists y$. rides $x y \&$ Motorcycle $y)$))
$\forall x$. NonSmoker $x \leftrightarrow$ Person $x \& \sim \operatorname{smokes} x$
$\forall x$. NonDriver $x \leftrightarrow$
(Person $x \& \sim(\exists y$. drives $x y \& \operatorname{Car} y)$
$\forall x$. TeeTotaller $x \leftrightarrow$
(Person $x \&$
$\sim(\exists y$. drinks $x y \&$
Beverage y \& isAlcoholic y))

FactTypeRule(isATypicalSportsPerson

(Person \wedge ?played?for?. 1
[?played?for?. $2 \bowtie$ (Sport \wedge isPopular)]
[?played?for?. $3 \bowtie($ Country \wedge isLarge)]))
$\forall x$.isATypicalSportsPerson $x \leftrightarrow$
(Person $x \&$
ヨyz. ?played?for? xyz \& Sport y \& isAlcoholic y \& Country z \& isLarge z)

* Person lives in Country iff
that Person lives in a State that is in that Country.

Person can fully communicate in Language iff that Person can speak that Language and can write in that Language.

* Person can communicate in Language iff that Person can speak that Language or can write in that Language.

* CarModel sold in Region iff
some Customer lives in that Region
and bought a Car that is of that CarModel
* Customer in Region bought CarModel iff that Customer lives in that Region and bought a Car that is of that CarModel.

FactTypeRule(livesInCountry

(Person ^ livesInState. 1
[livesInState. $2 \bowtie$ (State \wedge isIn. $1>$ [isIn. $2 \bowtie($ Country \wedge ?x)])])
(Country \wedge ?x))

FactTypeRule(canFullyCommunicateIn

(Person \wedge

(canSpeak. $1>$ [canSpeak. $2 \bowtie($ Language \wedge ?x)]) \wedge
(canWrite. $1>$ [canwrite. $2 \bowtie($ Language \wedge ?x)]))
(Language \wedge ?x))

FactTypeRule(canCommunicateIn

```
(Person ^
\(((\) canSpeak. \(1>[\) canSpeak. \(2 \bowtie(\) Language \(\wedge\) ?x)]) \(\vee\) (canWrite.1> [canwrite. \(2 \bowtie(\) Language \(\wedge\) ?x)])))
``` (Language \(\wedge\) ?x))

\section*{\(\forall x y\). livesInCountry \(x y \leftrightarrow\)}
(Person \(x \&\)
\(\exists z\) livesInState \(x z\) \& State \(z\) \& isIn zy\& Country y)
\(\forall x y\). canFullyCommunicateIn \(x y \leftrightarrow\)
(Person \(x \&\)
canSpeak \(x y \&\)
canWrite \(x y \&\)
Language \(y\))
\(\forall x y\). canFullyCommunicateIn \(x y \leftrightarrow\)
(Person \(x \&\)
(canSpeak \(x y \vee\)
canWrite \(x y\)) \&
Language \(y\))

\(\forall x y\). soldIn \(x y \leftrightarrow\)
(CarModel \(x\) \&
Region \(y\) \&
\(\exists z\). livesIn zy \& Customer z \&
\(\exists k\). bought \(z k\) \& Car \(k\) \& isOf \(k x\))
\(\forall x y\). ?in?bought? \(x y z \leftrightarrow\)
(Customer \(x\) \&
livesIn \(x y \&\) Region \(y \&\)
\(\exists k\). bought \(x k\) \& Car \(k\) \&
isOf kz \& CarModel z)```

[^0]: $(\forall x y$. hasSystolic $x y \rightarrow \exists z$. hasDiasystolic $x z) \wedge$ ($\forall x y$.hasDiasystolic $x y \rightarrow \exists z$. hasSystolic $x z$)

