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Abstract	
	

Object-Role	Modeling	(ORM)	is	a	rigorous	approach	to	modeling	and	querying	at	the	conceptual	level	the	information	semantics	of	arbitrary	
domains.	This	document	defines	an	abstract	syntax	for	ORM	conceptual	models	together	with	its	formal	semantics.	An	ORM	conceptual	model	
comprises	an	ORM	conceptual	schema	plus	a	population	of	(object	and	fact)	instances.	In	addition	to	type	and	constraint	declarations,	an	ORM	
schema	may	include	derivation	rules.	The	semantics	of	an	ORM	conceptual	model	is	defined	by	transforming	the	model	to	first-order	logic	
axioms,	whose	finite	models	denote	the	legal	abstract	information	structures	of	the	conceptual	specification.		

	
Status	of	this Document	
	

This	section	describes	the	status	of	this	document	at	the	time	of	its	publication.	Other	documents	may	supersede	this	document.	A	list	of	the	
revisions	of	this	technical	report	can	be	found	in	the	ORM.net	Technical	Recommendations	index	at		
<https://gitlab.com/orm-syntax-and-semantics/orm-syntax-and-semantics-docs.git>.	
	
This	document	is	part	of	the	ORM	document	suite.	It	is	the	central	ORM	normative	abstract	syntax	and	semantics	specification	and	it	formally	
defines	the	core	ORM	concepts.	The	companion	document	"ORM	abstract	syntax	and	semantics:	non-normative	glossary"	summarizes	the	
abstract	syntax	of	the	main	graphical	symbols	used	in	ORM	by	means	of	examples.	Both	documents	of	the	ORM	document	suite	can	be	found	
at	<https://gitlab.com/orm-syntax-and-semantics/orm-syntax-and-semantics-docs.git>.	
	
This	document	is	published	on	ORM.net	as	a	Proposed	Recommendation.	If	you	wish	to	make	comments	regarding	this	document,	please	
send	them	to	<orm-semantics@googlegroups.com>,	after	having	registered	at	<https://groups.google.com/group/orm-
semantics>.	All	comments	are	welcome.	
	
Once	this	document	becomes	an	ORM.net	Recommendation,	it	will	be	a	stable	document	and	may	be	used	as	reference	material	or	cited	from	
other	documents.	ORM.net's	role	in	making	the	Recommendation	is	to	draw	attention	to	the	specification	and	to	promote	its	widespread	
deployment.	This	enhances	the	functionality	and	interoperability	of	data	models	based	on	ORM	or	other	fact-based	modeling	approaches.	

	
Change	History	
	

• Public	BETA	3:	rearranged	the	introductory	parts.	
• Public	BETA	3:	fixed	the	semantics	for	identification	constraints.	
• Public	BETA	2:	fixed	typos.	

	
	 	



 

 

Introduction	
	
Object-Role	Modeling	(ORM)	is	a	conceptual	approach	to	modeling	and	querying	the	information	semantics	of	business	domains	in	terms	of	
the	underlying	facts	of	interest,	where	facts,	constraints	and	derivation	rules	may	be	verbalized	in	language	readily	understood	by	non-
technical	users	of	those	business	domains.	Unlike	Entity-Relationship	(ER)	modeling	and	the	Unified	Modeling	Language	(UML)	class	
diagrams,	but	similar	to	the	Web	Ontology	Language	(OWL),	ORM	treats	all	facts	as	relationships.	How	facts	are	grouped	into	structures	(e.g.	
attribute-based	entity	types,	classes,	relation	schemes,	XML	schemas)	is	considered	a	design	level,	implementation	issue	that	is	irrelevant	to	
the	capturing	of	essential	business	semantics.	Avoiding	attributes	in	the	base	model	enhances	semantic	stability,	populatability,	and	natural	
verbalization,	facilitating	communication	with	all	stakeholders.	For	information	modeling,	fact-oriented	graphical	notations	are	typically	far	
more	expressive	than	those	provided	by	other	notations.	ORM	includes	graphical	and	textual	languages	for	modeling	and	querying	
information	at	the	conceptual	level,	as	well	as	procedures	for	designing	conceptual	models,	transforming	between	different	conceptual	
representations,	forward	engineering	ORM	schemas	to	implementation	schemas	(e.g.	relational	database	schemas,	ontologies,	object-oriented	
schemas,	XML	schemas)	and	reverse	engineering	implementation	schemas	to	ORM	schemas.	
	
The	latest	version	of	ORM	(ORM	2)	is	thoroughly	described	in	the	2008	book	by	T.	Halpin	and	T.	Morgan	(“Information	Modeling	and	
Relational	Databases”,	second	edition,	Morgan	Kaufmann),	and	in	the	newer	books	by	T.	Halpin	(“Object-Role	Modeling	Fundamentals”,	
Technics	Publications,	2015)	and	its	companion	(“Object-Role	Modeling	Workbook”,	Technics	Publications,	2016)	providing	an	up-to-date	
coverage	of	the	latest	enhancements	to	ORM	and	its	conceptual	schema	design	procedure.	This	document	refers	to	the	ORM	2	version	of	ORM.	
With	respect	to	ORM	2,	this	version	of	the	document	does	not	include	the	specification	of	constraints	with	deontic	modality,	and	of	
aggregation	in	derivation	rules;	the	specification	of	these	features	is	postponed	to	a	later	version	of	the	document.	
	
This	document	defines	the	normative	syntax	and	the	semantics	of	ORM	Conceptual Models.	This	document	does	not	define	an	interchange	
format	for	ORM,	but	its	ultimate	goal	is	to	provide	a	self-contained	document	defining	the	non-ambiguous	semantics	of	all	the	ORM	basic	
constructs.	
The	syntax	defines	the	ORM	language,	and	it	is	given	by	specifying	a	signature	(the	ORM	Conceptual	Model	Signature),	and	then	the	set	of	well	
formed	formulae	which	can	be	built	using	the	signature.	An	ORM	Conceptual Model is	any	set	of	well-formed	formulae	from	a	given	ORM	
signature,	satisfying	all	the	constraints.	It	an	"abstract"	syntax	since	it	is	in	one-to-one	correspondence	with	the	concrete	graphical	syntax;	
this	is	exemplified	in	the	accompanying	glossary	document.	
The	semantics	is	a	standard	denotational	semantics.	The	semantics	of	an	ORM	Conceptual Model is	given	with	a	transformation	of	the	ORM	
conceptual	model	to	first-order	logic	formulas:	the	finite	first-order	structures	satisfying	the	obtained	first-order	logical	theory	are	in	one-to-
one	correspondence	with	the	legal	populations	of	the	ORM	conceptual	model.	
	
After	having	introduced	ORM	Conceptual	Model	Signatures	and	the	corresponding	First-Order	Logic	Signatures,	the	following	Sections	
describe	the	abstract	syntax	and	semantics	of	ORM’s	main	conceptual	model	constructs,	namely	declarations,	constraints,	and	derivation	
rules.	Each	ORM	conceptual	model	construct	is	described	in	a	boxed	text	subdivided	in	three	parts,	including	its	syntactic	expression	in	purple	
(based	on	generic	terms	from	the	ORM	signature),	possibly	the	syntactic	constraints	over	the	syntactic	expression,	and,	in	green,	its	
corresponding	semantics	specified	as	a	closed	first-order	logic	formula	or	as	a	rewriting	using	other	conceptual	model	constructs	(denoted	as	
a	MACRO).		An	ORM	conceptual	model	is	any	set	of	well-formed	declarations,	constraints,	and	derivation	rules	from	a	given	ORM	signature,	
such	that	it	includes	exactly	one	FactType	declaration	for	each	canonical	predicate	name	appearing	in	the	ORM	conceptual	model.	
	
	

	 	



 

 

Naming	conventions	
	
An	ORM	conceptual	model	is	formally	composed,	following	precise	syntactic	rules,	by	declarations	and	constraints,	built	from	terms	of	
different	syntactic	categories	(object	type	names,	predicate	names,	role	identifiers,	data	elements)	taken	from	a	signature.		
The	ORM	graphical	notation	depicts	a	fact	type	as	a	left-to-right	top-to-bottom	ordered	sequence	of	role	boxes,	each	of	which	is	attached	to	
exactly	one	object	type	shape.	A	fact	type	is	bijectively	associated	to	a	canonical	predicate.		
Fact	types	(resp.	object	types)	appearing	in	the	ORM	graphical	notation	as	distinct	are	associated	in	the	signature	to	distinct	predicate	names	
(resp.	object	type	names).	A	role	is	uniquely	identified	in	ORM	graphical	notation		by	the	fact	type	in	which	it	appears	together	with	its	
relative	position	(left-to-right	top-to-bottom)	within	the	fact	type;	each	role	is	given	in	the	signature	the	role	identifier	obtained	by	
concatenating	the	canonical	predicate	name	it	belongs	to	and	the	relative	position	within	it.	
In	this	document	we	assume	that	the	signature	of	an	ORM	conceptual	model	(e.g.,	the	choice	of	the	canonical	predicate	name	associated	to	a	
fact	type)	has	been	specified	without	ambiguity.	This	document	does	not	focus	on	the	pre-logical	or	linguistic	means	necessary	in	order	to	get	
the	formal	signature.	
Predicate	readings,	as	normally	introduced	in	the	ORM	methodology,	are	used	simply	for	readability	and	compactness	of	display	on	the	
graphical	notation	of	ORM	schema	diagrams,	and	are	not	necessarily	identifying,	since	distinct	fact	types	may	have	the	same	predicate	
reading.	On	the	other	hand,	distinct	predicate	names	in	the	signature	identify	necessarily	distinct	fact	types.	Alternate	predicate	readings	for	
the	same	fact	type	(e.g.,	useful	to	verbalise	differently	a	predicate	with	different	role	orderings)	are	all	obviously	denoting	the	same	fact	type,	
and	therefore	will	be	given	the	same	predicate	name	in	the	signature.	

	
	
	
ORM	Conceptual	Model	Signature	

	
An	ORM	conceptual	model	signature	is	composed	by	the	elements	<	𝓣,	𝒱,	𝓟,	𝓡	,	𝓓	,	b	,	𝓕,	a>	denoting	the	following:	
	

𝓣 a	finite	countable	set	of	domain	object	type	names 

𝒱	 a	set	𝒱⊆	𝓣	of	domain	value	type	names	

𝓟 a	finite	countable	set	of	predicate	names 

𝓡 a	finite	countable	set	of	role	names 

𝓓 a	finite	countable	set	of	domain	values 

b	 a	total	function	b	:	𝒱	→	2𝒟,	the	domain	value	type	extension 

𝓕 A	finite	countable	set	of	value	function	names	

a	 a	total	function	a:	𝓟∪𝓕	→	ℕ+		specifying	the	predicate	or	the	function	arity		

	
We	adopt	the	following	syntactic	conventions	in	the	ORM	conceptual	model:	

• the	letters	h,i,	j,	k,l,m,n denote	positive	integer	numbers;	
• the	letters	p,q denote	integer	numbers;	
• T	denotes	a	domain	object	type	name	∈	𝓣;	
• V	denotes	a	domain	value	type	name	∈	𝒱;	
• P	denotes	a	predicate	name	∈	𝓟;	
• r	denotes	a	role	name	∈	𝓡;	
• d	denotes	a	domain	value	∈	𝓓;	
• f	denotes	a	value	function	name	∈	𝓕.	
• P.i	denotes	the	i-th	role	identifier	of		P,	with	1≤i≤	a(P);	
• ?v	denotes	a	variable	symbol		within	a	derivation	rule,	with	v	∈	STRINGS.	

	
	
	 	



 

 

First-Order	Logic	Signature	
	
The	First-Order	Logic	(FOL)	signature	of	an	ORM	conceptual	model	reuses	the	same	symbols	from	𝓣,	𝒱,	𝓟,	𝓓,	𝓕		of	the	ORM	conceptual	
model	signature,	and	it	is	composed	by	the	elements	<	𝓣,	𝒱,	𝓟,	𝓛,	𝓓,	𝓖,	𝓕	>	denoting	the	following:	
	

𝓣 a	finite	countable	set	of	unary	predicate	symbols	 

𝒱 a	set	𝒱⊆	𝓣	 

𝓟 a	finite	countable	set	of	predicate	symbols,	each	P ∈	𝓟	with	arity	a(P) 

𝓛 a	family	of	injective	and	well-founded	objectification	functions,	one	for	each	P ∈	𝓟	and	with	arity	a(P)	

𝓓 a	finite	countable	set	of	constant	symbols 

𝓖 A	family	of	domain	value	to	data	value	injective	functions		𝛾"	for	each	V ∈	𝒱,		
such	that	for	each	d	∈	b	(V)	and	T	∈	𝓣,	it	holds	that	V(d	)	and	∀𝑥. 𝑇(𝑥) → 𝑥 ≠ 𝛾"(d)	

𝓕	 A	family	of	functions	over	data	values,	namely	with	domain	and	range	over	the	range	of	the	function	𝛾	

	
We	adopt	the	following	syntactic	conventions	in	the	FOL	formulas:	

• the	precedence	of	Boolean	operators	is:		“~“ > 	“&“ > 	“ ∨ “	 > 	“ → “;	
• ℓ#	denotes	a	function	∈	𝓛	associated	to	the	predicate	P	∈	𝓟	and	with	arity	a(P);	
• 𝛾"	denotes	a	function	∈	𝓖	associated	to	the	domain	value	type	V.	

	
The	following	extensions	to	FOL	are	used	the	specify		the	semantics	of	ORM	Conceptual	Models.	

• The	translation	of	derivation	rules	is	given	in	first-order	logic	extended	with	lambda	expressions.	In	the	specification	as	a	first	order	
logic	formula	of	the	semantics	of	a	derivation	rule	containing	a	PATH		expression,	a	PATH		expression	corresponds	to	an	open	first	
order	formula	with	one	free	variable.	Such	an	open	formula	is	built	inductively	from	the	parse	tree	of	the	PATH		expression	using	its	
grammar	specification	in	a	way	similar	to	Montague	grammars.	The	composition	among	steps	in	the	induction	makes	use	of	lambda	
expressions	and	their	application	using	variable	bindings	and	substitutions:	if	𝜑	is	a	formula	with	a	free	variable	x,	and	t		is	a	term,	
an	application	of	the	lambda	calculus	β-reduction	rule		((λx.	𝜑)(t	))	⤏	(𝜑[x/t])		replaces	the	occurrences	of	the	bound	variable	x		
within	the	body	𝜑	of	the	lambda	expression	with	the	term	t.	

• The	translation	of	ring	constraints	is	given	in	first-order	logic	extended	with	the	transitive	closure		operator	(∙)∗	over	binary	
predicates.	First-order	logic	extended	with	the	transitive	closure	operator	is	strictly	more	expressive	than	first-order	logic.	The	
transitive	closure	of	a	binary	predicate	P		can	be	expressed	in	first-order	logic	with	least	fixpoints	as	follows:	
∀𝑥%𝑦%.P∗𝑥%𝑦% 	↔ lfpQ,'((P𝑥𝑦 ∨ (∃𝑧.	Q𝑥𝑧	&	P𝑧𝑦))𝑥%𝑦%.	

• The	translation	of	identification	constraints	is	given	in	first-order	logic	extended	with	well-founded		binary	relations.	A	binary	
relation	R	is	well-founded,	well-founded(R),	if	its	interpretation	contains	no	countable	infinite	descending	chains:	that	is,	in	the	
interpretation	of	R	there	is	no	infinite	sequence	a0,	a1,	a2,	...	of	non	necessarily	distinct	elements	such	that		P	an	an+1		for	every	natural	
number	n.	

	
	
	
First-Order	Logic	ORM	Conceptual	Model	

	
The	First-Order	Logic	(FOL)	Conceptual	Model	of	an	ORM	conceptual	model	is	a	FOL	theory	composed	by	the	theory	𝚽	obtained	by	applying	the	
transformations	specified	in	the	Sections	below,	with	an	additional	closure	theory	𝚯.	
The	closure	theory	𝚯	is	needed	in	order	to	give	the	right	semantics	to	the	identification	constraints,	and	it	includes:		

• top-level	disjointness	axioms	of	the	form	(∀𝑥. 𝑇)(𝑥) → ¬𝑇*(𝑥))	for	any	pair	of	object	types	such	there	is	no	object	type	T		such	that  
Φ ⊨ �∀𝑥. 𝑇)(𝑥) → 𝑇(𝑥)� ∧ �∀𝑥. 𝑇*(𝑥) → 𝑇(𝑥)�;	

• a	well-foundedness	axiom	involving	all	the	special	binary	predicate	symbols	P+ID	introduced	by	identification	constraints	in	the	
conceptual	model:	well-founded(P)ID ∪…∪ P.ID).	

	
	
	 	



 

 

Declarations	
	

FactType(P (𝑇) … 𝑇/(#))) P	does	not	appear	as	an	AlternatePredicate 

∀𝑥)…	𝑥/(#). 𝑃𝑥)…	𝑥/(#) 	→ 𝑇)𝑥)	&	… 	&	𝑇/(#)𝑥/(#)	

	
	

AlternatePredicate(P, Pa (P.	𝑖) … P.	𝑖/(#)))	 P≠Pa 
α(P)	=	α(Pa)	
{	𝑖)	…		𝑖/(#)}={1	…	𝛼(𝑃)}	

(MACRO)	
Replace	all	occurrences	of		Pa.j		in	the	ORM	conceptual	model	with		P.	𝑖2 	,	and	then	all	occurrences	of		Pa	with		P	

	
	

RoleNaming(P.i r)  

(MACRO)	
Replace	all	occurrences	of	the	role	name		r		in	the	ORM	conceptual	model	with	the	role	identifier	P.i	

	
	
	
Constraints	

	

Mandatory(T P1.i1 … Pm.im)	 for j≠k and j,k≤m: Pj	≠Pk	

∀𝑥. 𝑇𝑥	 → 	∃𝑦)…	𝑦/(#!). �𝑃)𝑦)…	𝑦/(#!)	&	𝑥 = 𝑦3!�	∨ …	∨	∃𝑦)…	𝑦/(#"). �𝑃4𝑦)…	𝑦/(#")	&	𝑥 = 𝑦3"�	

	
	

Unique(P.i1 … P.im)	 for j≠k and j,k≤m: ij	≠ik	

(MACRO)	
Frequency(P.i1 … P.im (1, 1))	

	
	

Identification(T P.im+1 (P.i1 … P.im))	 for j≠k and j,k≤m+1: ij	≠ik	

(MACRO)	
Unique(P.im+1) 
Mandatory(T (P.im+1)) 
Unique(P.i1 … P.im) 
FactTypeRule(P)ID(P.im+1 ➤ (P.i1 ⋈ ?x)) (?x)) 
…  
FactTypeRule(P.ID(P.im+1 ➤ (P.im ⋈ ?x)) (?x)) 

	
	

ExternalUnique(P1.i1 … Pm.im)	 for j≠k and j,k≤m	: 
a(Pj)=2	,	Pj	≠Pk,	if	ij=1	then	lj=2	else	lj=1; 

						and	P	fresh	predicate	name	of	arity	m+1	

(MACRO)	
FactTypeRule(P (P1.i1 ➤ (P1.l1 ⋈ ?x)) … (Pm.im ➤ (Pm.lm ⋈ ?x)) (?x)) 
Unique(P.1 … P.m) 

	
	



 

 

ExternalIdentification(T (P)ID.i1 … P.ID.im))	 for j≠k and j,k≤m	+1: 
a(P6ID)=2	,	P6ID	≠P7ID,	if	ij=1	then	lj=2	else	lj=1; 
					and	P	fresh	predicate	name	of	arity	m+1	

(MACRO)	
FactTypeRule(P (P)ID.i1 ➤ (P)ID.l1 ⋈ ?x)) … (P.ID.im ➤ (P.ID.lm ⋈ ?x)) (?x)) 
Unique(P.1 … P.m) 
Unique(P.m+1) 
Mandatory(T (P.m+1)) 

	
	

Frequency(P.i1 … P.im F) for j≠k and j,k≤m: ij	≠ik. 
p,q≥1  
 

(1) F	⩴(p..)	
(2) F	⩴(..q)	
(3) F	⩴(p..q)	
(4) F	⩴(p)	

(1) �∀𝑥)…	𝑥/(#). 𝑃𝑥)…	𝑥/(#) 	→ 	∃89𝑦)…	𝑦/(#). 𝑃𝑦)…	𝑦/(#)	&	𝑥3! = 𝑦3!	&	… 	&	𝑥3" = 𝑦3"� 
(2) �∀𝑥)…	𝑥/(#). 𝑃𝑥)…	𝑥/(#) 	→ 	∃:;𝑦)…	𝑦/(#). 𝑃𝑦)…	𝑦/(#)	&	𝑥3! = 𝑦3!	&	… 	&	𝑥3" = 𝑦3"� 
(3) �∀𝑥)…	𝑥/(#). 𝑃𝑥)…	𝑥/(#) 	→ 	∃89𝑦)…	𝑦/(#). 𝑃𝑦)…	𝑦/(#)	&	𝑥3! = 𝑦3!	&	 … 	&	𝑥3" = 𝑦3"�	& 

�∀𝑥)…	𝑥/(#). 𝑃𝑥)…	𝑥/(#) 	→ 	∃:;𝑦)…	𝑦/(#). 𝑃𝑦)…	𝑦/(#)	&	𝑥3! = 𝑦3!	&	… 	&	𝑥3" = 𝑦3"� 
(4) �∀𝑥)…	𝑥/(#). 𝑃𝑥)…	𝑥/(#) 	→ 	∃<9𝑦)…	𝑦/(#). 𝑃𝑦)…	𝑦/(#)	&	𝑥3! = 𝑦3!	&	… 	&	𝑥3" = 𝑦3"� 

	
	

ExternalFrequency(P1.i1 … Pm.im F)	 for j≠k and j,k≤m	: 
							a(Pj)=2	,	Pj	≠Pk,	if	ij=1	then	lj=2	else	lj=1; 
						and	P	fresh	predicate	name. 
p,q≥1  
 

(1) F	⩴(p..)	
(2) F	⩴(..q)	
(3) F	⩴(p..q)	
(4) F	⩴(p)	

(MACRO)	
FactTypeRule(P (P1.i1 ➤ (P1.l1 ⋈ ?x)) … (Pm.im ➤ (Pm.lm ⋈ ?x)) (?x)) 
Frequency(P.1 … P.m F)	

	
	

Subtype((T1 … Tm) T)	 	

(∀𝑥. 𝑇)𝑥	 → 	𝑇𝑥)	&…&	(∀𝑥. 𝑇4𝑥	 → 	𝑇𝑥)	

	
	

ExclusiveSubtypes((T1 … Tm) T)	 	

(∀𝑥. 𝑇)𝑥	 → 	𝑇𝑥	&	~𝑇*𝑥	&…&	~𝑇4𝑥)	&…&	(∀𝑥. 𝑇4=)𝑥	 → 	𝑇𝑥	&	~𝑇4𝑥)	&	(∀𝑥. 𝑇4𝑥	 → 	𝑇𝑥)	

	
	

ExhaustiveSubtypes((T1 … Tm) T)	 	

�(∀𝑥. 𝑇)𝑥	 → 	𝑇𝑥)	&…&	(∀𝑥. 𝑇4𝑥	 → 	𝑇𝑥)�	∧	(∀𝑥. 𝑇𝑥	 → 	𝑇)𝑥	 ∨ …	∨	𝑇4𝑥)	

	
	

Subset((P1.i1 P2.h1) … (P1.im P2.hm))	 P1≠P2 	and		for j≠k and j,k≤m	: 
  P1.ij	≠ P1.ik and P2.hj	≠ P2.hk 

∀𝑥)…	𝑥/(#!). 𝑃)𝑥)…	𝑥/(#!) 	→ ∃𝑦)…	𝑦/(##). 𝑃*𝑦)… 	𝑦/(##)	&	𝑥3! =	𝑦>! 	&	… 	&	𝑥3" =	𝑦>" 	

	
	

Exclusive((P1.i1 P2.h1) … (P1.im P2.hm))	 P1≠P2 	and		for j≠k and j,k≤m	: 



 

 

  P1.ij	≠ P1.ik and P2.hj	≠ P2.hk 

∀𝑥)…	𝑥/(#!). 𝑃)𝑥)…	𝑥/(#!) 	→ ∃𝑦)…	𝑦/(##). ~𝑃*𝑦)…	𝑦/(##)	&	𝑥3! =	𝑦>! 	&	… 	&	𝑥3" =	𝑦>" 	

	
	

Equal((P1.i1 P2.h1) … (P1.im P2.hm))	 P1≠P2 	and		for j≠k and j,k≤m	: 
  P1.ij	≠ P1.ik and P2.hj	≠ P2.hk 

(MACRO)	
Subset((P1.i1 P2.h1) … (P1.im P2.hm)) 
Subset((P2.h1 P1.i1) … (P2.hm P1.im))	

	
	

TypeCardinality(T (p, q))	 p,q≥0		and q		possibly		∞	

∃9..;𝑥. 𝑇𝑥	

	
	

RoleCardinality(P.i (p, q))	 p,q≥0		and q		possibly		∞	

∀𝑥)…	𝑥@. ∃9..;𝑦. 𝑃𝑥)… 	𝑥@	&	𝑥3 = 𝑦	

	
	

Objectifies(T P)	 	

∀𝑥)…	𝑥@. 𝑃𝑥)…	𝑥@ 	↔ 	𝑇�ℓ#(𝑥)…	𝑥@)�	

	
	

ValuesOf(V (d1 … dm))	 	

∀𝑥. V𝑥	 → (𝑥 = 𝑑)) ∨ …	∨ (𝑥 = 𝑑4)	

	
	

ValuesOf(P.i (d1 … dm))	 	

∀𝑥)…	𝑥@. 𝑃𝑥)…	𝑥/(#) 	→ (𝑥3 =	𝑑)) ∨ …	∨ (𝑥3 =	𝑑4)	

	
	

≶(P.i1 P.i2)	 ≶	⩴<	|	£	|	>	|	³	|	=	|	¹	
and	V1	is	the	value	type	associated	to	P.i1 
and	V2	is	the	value	type	associated	to	P.i2	

∀𝑥)…	𝑥/(#)𝑦)…	𝑦/(#). 𝑃𝑥)…	𝑥/(#)	&	𝑃𝑦)…	𝑦/(#) 	→ 𝛾"!(𝑥3$) ≶ 𝛾"#(𝑦3#)	

	
	



 

 

RingConstraint(P.i P.j)	 i≠j		and	Pb	fresh	predicate	name	with	a(PA) = 2	

(MACRO)	
JoinPath(Pb (P.i P1.j)) 
 

• LocallyReflexive 
• ∀𝑥)𝑥*.		PA𝑥)𝑥* 	→ 	PA𝑥)𝑥)	

 
• PurelyReflexive 

• ∀𝑥)𝑥*.		PA𝑥)𝑥* 	→ 	𝑥) = 𝑥*	
 

• Irreflexive 
• ∀𝑥.		~PA𝑥𝑥	

  
• Symmetric 

• ∀𝑥)𝑥*.		PA𝑥)𝑥* 	→ 	PA𝑥*𝑥)	
 

• Asymmetric 
• ∀𝑥)𝑥*.		PA𝑥)𝑥* 	→ ~PA𝑥*𝑥)	

 
• Antisymmetric 

• ∀𝑥)𝑥*.		PA𝑥)𝑥*	&	𝑥) ≠ 𝑥* 	→ ~PA𝑥*𝑥)	
 

• Transitive 
• ∀𝑥)𝑥*𝑦)𝑦*. PA𝑥)𝑥*	&	PA𝑦)𝑦*	&	𝑥* = 𝑦) 	→ PA𝑥)𝑦*	

 
• Intransitive 

• ∀𝑥)𝑥*𝑦)𝑦*. PA𝑥)𝑥*	&	PA𝑦)𝑦*	&	𝑥* = 𝑦) 	→ ~PA𝑥)𝑦*	
 

• StronglyIntransitive 
• ∀𝑥)𝑥*𝑦)𝑦*. PA𝑥)𝑥*	&	PA∗𝑦)𝑦*	&	𝑥* = 𝑦) 	→ ~PA𝑥)𝑦*	

 
• Acyclic 

• ∀𝑥.		~PA∗𝑥𝑥	

	 	



 

 

Derivation	Rules	
	

SubTypeRule(T PATH)  

∀𝑥. 𝑇𝑥 ↔ ∃𝑣𝑎𝑟)…𝑣𝑎𝑟4. PATH↦	𝑥  {𝑣𝑎𝑟)…𝑣𝑎𝑟4}	includes	all	the	?VAR	variable	symbols	in	PATH↦ 

	
	

FactTypeRule(P PATH1 … PATH!(#))  

∀𝑥)…	𝑥/(#). 𝑃𝑥)…𝑥/(#) ↔ ∃𝑣𝑎𝑟)…𝑣𝑎𝑟4. PATH)↦	𝑥)	&…&		PATH/(#)
↦ 	𝑥/(#) 

 

 {𝑣𝑎𝑟)…𝑣𝑎𝑟4}	includes	the	?VAR	variable	symbols	in	PATH)↦, …	, PATH/(#)↦  

	
	

JoinPath(P (P1.i1 P1.j1) … (Pm.im Pm.jm))	 	a(P) = 2		and		for k≤m: ik	≠jk 

(MACRO)	
FactTypeRule(P (P1.i1 ➤ (P1.j1 ⋈ (P2.i2 ➤ (P2.j2 ⋈ (… (Pm.im ➤ (Pm.jm ⋈ ?x)))))))   
	 (?x)) 

	
	

PATH ::= T |  
 Pu | 
 P.i ➤ [P.i1 ⋈ PATH1] … [P.im ⋈ PATHm] | 
 PATH1 ∨ PATH2 | 
 PATH1 ∧ PATH2 | 
 PATH1 ∖ PATH2 | 
 {d1 … dn} | 
 ?VAR | 
 V ≶ TERM 
TERM ::= d | ?VAR | f(TERM1 … TERMα(f)) 

≶	⩴	<	|	£	|	>	|	³	|	=	|	¹	
a(PC) = 1	
for j≠k and j,k≤m: ij	≠ik	

 T ↦ 𝜆𝑥. 𝑇𝑥 
 Pu ↦ 𝜆𝑥. 𝑃C𝑥 
 P.i ➤ [P.i1 ⋈ PATH1]…[P.im ⋈ PATHm] ↦ 𝜆𝑥. ∃𝑥)…𝑥/(#). 𝑃𝑥)…𝑥/(#) ∧ PATH)↦	𝑥3! 	&…&		PATH4

↦ 	𝑥3" ∧ 𝑥 = 𝑥3 
 PATH1 ∧ PATH2 ↦ 𝜆𝑥. PATH)↦	𝑥	&		PATH*↦	𝑥 
 PATH1 ∨ PATH2 ↦ 𝜆𝑥. PATH)↦	𝑥	 ∨ 	PATH*↦	𝑥 
 PATH1 ∖ PATH2 ↦ 𝜆𝑥. PATH)↦	𝑥	&		~PATH*↦	𝑥 
 {d1 … dn} ↦ 𝜆𝑥. 𝑥 = d1 ∨ …	∨ 	𝑥 = dn 
 ?VAR ↦ 𝜆𝑥. 𝑥 =	?VAR 
 V ≶ TERM ↦ 𝜆𝑥. V𝑥 ∧	𝛾"(𝑥) ≶ 𝛾"(TERM↪)	 
 d ↪ d 
 ?VAR ↪ ?VAR 
 f(TERM1 … TERMa𝓕(f)) ↪ f(TERM)

↪ … TERMaℱ(E)
↪ ) 

	


