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This is the thirteenth in a series of articles on ontology-based approaches to modeling. The main focus is on 
popular ontology languages proposed for the Semantic Web, such as the Resource Description Framework 
(RDF), RDF Schema (RDFS), and the Web Ontology Language (OWL). The first article [3] introduced 
ontologies and the Semantic Web, and covered basic concepts in the Resource Description Framework 
(RDF), contrasting them with other data modeling approaches. The second article [4] discussed the N3 
notation for RDF, and covered the basics of RDF Schema. The third article [5] provided further coverage of 
RDFS, and introduced different flavors of the Web Ontology language (OWL). The fourth article [6] 
discussed basic features of OWL, mainly using Manchester syntax. The fifth article [7] discussed OWL 
taxonomy, comparison operators for classes, data types and predicates, and examined inverses, functional 
roles and keys in more depth. The sixth article [8] covered cardinality restrictions in OWL 2. The seventh 
article [9] discussed the union, intersection, and complement operators in OWL 2. The eighth article [10] 
explored support for ring constraints within OWL 2. The ninth article [11] discussed enumerated types as 
well as value restrictions on properties in OWL 2. The tenth article [12] examined OWL 2’s support for 
property chains, and compared this with related concepts in data modeling approaches. The eleventh article 
[13] reviewed the logical status of structural statements in OWL 2, contrasting this with other data 
modeling approaches that support both integrity constraints and derivation rules. The twelfth article [14] 
discussed how to express negated facts in OWL 2, and avoid circularity when declaring subproperty chains. 
The current article provides a detailed comparison of the ways in which OWL 2, ORM, Barker ER, UML 
2.5, and relational databases support simple identifiers. 
 
 
Simple Identifiers 
 
Figure 1(a) models some ways to refer to a country using the Object-Role Modeling (ORM) notation [2]. 
Let’s assume that the model documentation declares that country codes are ISO 3166 alpha-2 codes (e.g. 
“AU” for Australia, and “US” for the United States of America), and that ISO names are used for country 
names. The reference mode “(.code)” indicates that countries are primarily identified by their country code, 
so each country has exactly one country code (for this model we ignore other country codes such as ISO 
3166 alpha-3 codes) and each country code refers to at most one country.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 A schema in (a) compact ORM, (b) explicit ORM, (c) Relational, (d) Barker ER, and (e) UML notation.  
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The large dot attached to the Country role of the fact type Country has current- CountryName depicts the 
mandatory role constraint “Each Country has some current CountryName”. Each bar next to a role depicts a 
uniqueness constraint on its role, so the current name relationship is one-to-one (each country has at most 
one current country name, and vice versa). The fact type Country has previous- CountryName is also one-to-one, 
but is optional for Country. Only a few countries have a previous name (e.g. Sri Lanka was called “Ceylon” 
until 1972, and Myanmar formerly had the ISO country name “Burma”). The circled “X” denotes the 
exclusion constraint that no country name is both a current and a previous ISO country name.  

The Country(.code) reference mode notation is a convenient abbreviation for the mandatory 1:1 fact type 
Country has CountryCode shown in Figure 1(b), where the uniqueness constraint on the role of the CountryCode 
value type is chosen for the preferred or primary identifier (as indicated by a double bar). In ORM, the 
simplest kind of identification scheme for an entity type is a mandatory, 1:1 relationship from the entity 
type to a value type. In this example, each of the country code and current country name relationships 
provide such a simple identification scheme for Country. The previous country name relationship is not an 
identification scheme for Country, since not all instances of Country have to participate in this relationship. 
Nevertheless, previous country names are identifiers for those countries that have a previous name. 

Figure 1(c) displays the relational database schema diagram generated from the ORM schema using 
the NORMA tool [16], an open source plug-in to Microsoft Visual Studio. The table scheme for Country 
has three columns (a.k.a. attributes). The countryCode and currentCountryName attributes are in bold type, 
indicating that they are mandatory (not nullable). The previousCountryName attribute is unbolded, so is 
optional (nullable). The “PK” marks countryCode as a primary key component for Country. Since no other 
columns in Country are marked “PK”, countryCode is the whole primary key of that table. The “U1” on the 
currentCountryName column marks it as a component of another uniqueness constraint (named U1 in the 
scope of this table). No other columns in the table are marked “U1”, so entries in the currentCountryName 
column are unique (no duplicates). Since currentCountryName is also mandatory, it is an alternate key for 
Country. The “U2” applied just to the previousCountryName column indicates that its non-null entries are 
unique, so those countries that have a previous name can also be identified by that previous name. 
 Figure 1(d) depicts the example in the Barker Entity Relationship (ER) notation [1], arguably the best 
of the popular, industrial versions of ER. The “#” on the country code attribute means that it is a component 
of the primary identifier for the Country entity type. In this case, it is the whole primary identifier. An 
asterisk “*” preceding an attribute indicates that it is mandatory for its entity type, and a small “o” indicates 
that the attribute is optional. Graphically, the only identifier that Barker ER can depict is the primary 
identifier, so it cannot mark the country name attribute as an alternate key. Nor can it display the 
uniqueness constraint on the non-null entries for the previous name attribute. 

Figure 1(e) depicts the example as a class diagram in the Unified Modeling Language (UML) notation. 
Attribute multiplicities appear in square brackets after the attribute name. A multiplicity of 1 indicates that 
the attribute is mandatory and single valued, so each country has exactly one code and exactly one (current) 
name. A multiplicity of “0..1” means the attribute is optional and single-valued, so each country has at most 
one previous name. In 2011, UML version 2.4.1 introduced the capability to declare a class property 
(attribute or association end owned by the class) to be a component of a value-based identifier for the class. 
On a class diagram, the class property is annotated with an “{id}” modifier (in the UML metamodel, this 
sets the isID attribute of the property to true). The semantics of this feature remains the same in the latest 
version at the time of writing, UML 2.5 beta 1 [15]. In Figure 1(e) the code attribute is the only one marked 
with “{id}” so this declares it as the natural identifier for the Country class. While UML does not require 
value-based identifiers to be declared, for human communication purposes such identifiers are essential.  

UML allows at most one identification scheme per class to be depicted with the {id} modifier, so 
cannot graphically depict the name attribute as an alternate identifier for Country. Even if Country had no 
other identification schemes, we cannot use the {id} modifier to depict the previousName attribute as 
unique for its non-null entries, since UML does not allow the components of an {id} scheme to all be 
optional. Using techniques discussed in earlier articles, and ignoring the exclusion constraint between 
current and previous country names, the example may be specified in OWL as shown in Table 1. For 
readability, we consider only Manchester and Turtle syntax. We could shorten the code by assuming ISO 
alpha-2 codes (with implicit prefixes for the containing document) are used as Internationalized Resource 
Identifiers (IRIs) for countries, but let’s assume other terms are used for the country IRIs (e.g. “:USA” for 
the United States of America, “:Oz” for Australia). Many country names contain embedded spaces (e.g. 
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“Czech Republic”) so can’t be used directly as IRIs (though modified names using underscores or hyphens 
for spaces could be).  

In practice, many OWL ontologies use meaningless, automatically generated identifiers as IRIs just as 
some relational database designers prefer artificial, surrogate keys for their table schemes. Human-readable 
labels can be associated with IRIs using rdfs:label annotation properties, and OWL software tools such as 
Protégé (http://protege.stanford.edu/) can be configured to display labels instead of IRIs to make the 
ontologies more readable.  

Our decision in OWL to use IRIs to identify all countries of interest is not reflected in the Figure 1 
data models, which are designed for database applications where country codes are standardly used to 
identify countries. As discussed further later, declaration of HasKey properties for a class is relevant only 
for the class individuals with IRIs explicitly declared. 

 

Table 1 Coding the model in Figure 1 in OWL 

Manchester Syntax Turtle Syntax 

DataProperty: hasCountryCode 
  Domain: Country 
  Range: xsd:string 
  Characteristics: Functional 
DataProperty: hasCurrentCountryName 
  Domain: Country 
  Range: xsd:string 
  Characteristics: Functional 
DataProperty: hasPreviousCountryName 
  Domain: Country 
  Range: xsd:string 
  Characteristics: Functional 
Class: Country 
  SubClassOf:  hasCountryCode min 1 
  HasKey:  hasCountryCode 
  SubClassOf:  hasCurrentCountryName min 1 
  HasKey:  hasCurrentCountryName 
  HasKey:  hasPreviousCountryName 
 

:hasCountryCode  a  owl:DatatypeProperty,  
        owl:FunctionalProperty. 

:hasCountryCode  rdfs:domain  :Country ; 
                              rdfs:range  :xsd:string.  
:hasCurrentCountryName  a  owl:DatatypeProperty,  

                      owl:FunctionalProperty. 
:hasCurrentCountryName  rdfs:domain  :Country ; 
                                           rdfs:range  :xsd:string.  
hasPreviousCountryName  a  owl:DatatypeProperty,  

                      owl:FunctionalProperty. 
:hasPreviousCountryName  rdfs:domain  :Country ; 
                                             rdfs:range  :xsd:string.  
:Country  rdfs:subClassOf   
  [  a owl:Restriction; 
      owl:onProperty  :hasCountryCode; 
      owl:minCardinality 1 ]. 
:Country  owl:hasKey  ( :hasCountryCode ). 
:Country  rdfs:subClassOf   
  [  a owl:Restriction; 
      owl:onProperty  :hasCurrentCountryName; 
      owl:minCardinality 1 ]. 
Country  owl:hasKey  ( :hasCurrentCountryName ). 
Country  owl:hasKey  ( :hasPreviousCountryName ). 

 
In OWL, declaring a predicate as a HasKey property is similar to saying that it is inverse functional (in 

ORM terms, this simply adds a uniqueness constraint to the second role of the predicate). For example, 
“HasKey: hasCountryCode” declares that each character string is the country code of at most one named 
country. The HasKey feature has to be used for this declaration, since OWL does not allow data properties 
(that relate individuals to literals) to be directly declared as inverse functional properties (e.g. using the 
InverseFunctional characteristic in Manchester syntax, or owl:InverseFunctionalProperty in Turtle syntax). 

However, OWL does allow object properties (that relate individuals to individuals) to be directly 
declared inverse functional. Recall that in OWL an individual may be named (identified by an IRI) or 
unnamed (represented by a blank node). This allows OWL to capture identification schemes that identify 
individuals by relating them directly to other individuals.  

For example, the schemas in Figure 2 identify top politicians (e.g. presidents or prime ministers) by 
the country that they head (as chief politician). In the ORM schema of Figure 2(a), this is modeled using 
the mandatory 1:1 fact type TopPolitician heads Country, with the double-bar indicating the uniqueness 
constraint for the preferred identifier. For simplicity, the value constraint on gender codes (‘M’, ‘F’ for 
males and females) is omitted. This schema allows us to record the current facts that the top politician of 
the USA is male and the top politician of Australia is female, without knowing their names (‘Barack 
Obama’ and ‘Julia Gillard’).  
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Figure 2 Identifying top politicians by the country they head, using (a) ORM, (b) Relational, and (c) UML notation.  

Figure 2(b) shows the relational schema generated from the ORM schema using the NORMA tool. 
Here the countryCode primary key is used to identify the top politicians. For example, the two facts 
mentioned earlier may be entered as the tuples (‘US’, ‘M’) and (‘AU’, ‘F’) respectively. Figure 2(c) shows 
a UML class diagram for this example, using the {id} modifier to mark the association end 
TopPolitican.country as the identifier for instances of the TopPolitician class. 

Although Barker ER allows relationships as components of a composite primary identifier, it does not 
cater for cases like this where a single relationship provides the whole identifier [1, p. 3-13]. So Barker ER 
does not support this kind of identification scheme. 

Table 2 shows one way to code the TopPolitician schema in OWL, using Manchester or Turtle syntax. 
Here we assume that instances of Country and Gender have IRIs other than codes (e.g. :USA, :male). The 
identification scheme for TopPolitician is captured by specifying the object property headsCountry as an 
injective (mandatory, 1:1 into) relationship from TopPolitician to Country by declaring its minCardinality to be 
1 and characterizing the predicate as both functional and inverse functional. Because the headsCountry 
predicate is an object property rather than a data property, its inverse functional nature can be directly 
declared without classifying it as a HasKey property. 

 

Table 2 Coding the model in Figure 2 in OWL 

Manchester Syntax Turtle Syntax 

DataProperty: hasCountryCode 
  Domain: Country 
  Range: xsd:string 
  Characteristics: Functional 
Class: Country 
  SubClassOf:  hasCountryCode min 1 
  HasKey:  hasCountryCode 
 
DataProperty: hasGenderCode 
  Domain: Gender 
  Range: xsd:string 
  Characteristics: Functional 
Class: Gender 
  SubClassOf:  hasGenderCode min 1 
  HasKey:  hasGenderCode 
 
ObjectProperty: headsCountry 
  Domain: TopPolitician 
  Range: Country 
  Characteristics: Functional, 
                            InverseFunctional 
 
ObjectProperty: hasGender 
  Domain: TopPolitician 
  Range: Gender 
  Characteristics: Functional 
 
Class: TopPolitician 
  SubClassOf:  headsCountry min 1 
  SubClassOf:  hasGender min 1 

:hasCountryCode  rdfs:domain  :Country ; 
                              rdfs:range  :xsd:string;  
                              a  owl:DatatypeProperty;  

    a  owl:FunctionalProperty. 
:Country  rdfs:subClassOf   
  [  a owl:Restriction; 
      owl:onProperty  :hasCountryCode; 
      owl:minCardinality 1 ]. 
:Country  owl:hasKey  ( :hasCountryCode ). 
 
:hasGenderCode  rdfs:domain  :Gender; 
                             rdfs:range  :xsd:string;  
                             a  owl:DatatypeProperty;  

   a  owl:FunctionalProperty. 
:Gender  rdfs:subClassOf   
  [  a owl:Restriction; 
      owl:onProperty  :hasGenderCode; 
      owl:minCardinality 1 ]. 
:Gender  owl:hasKey  ( :hasGenderCode ). 
 
:headsCountry  rdfs:domain  :TopPolitician ; 
                          rdfs:range  :Country;  
                          a  owl:ObjectProperty; 
                          a  owl:FunctionalProperty; 
                          a  owl:InverseFunctionalProperty. 
:hasGender  rdfs:domain  :TopPolitician ; 
                    rdfs:range  :Gender;  
                    a  owl:ObjectProperty; 
                    a  owl:FunctionalProperty. 
 
:TopPolitician  rdfs:subClassOf   
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Country
(.code)

Politician
(IRI) was born in

has / is of

CountryCode

Politician

Country
was born in

has / is of

IRI

[birthCountry]

[birthCountry]

(c)

IRI

www.eg.org#George-W-Bush
www.eg.org#Obama
www.eg.org#JuliaGillard

birthCountry

US
US
GB

(d)

(a) (b)

  [  a owl:Restriction; 
      owl:onProperty  :headsCountry; 
      owl:minCardinality 1 ]. 
:TopPolitician  rdfs:subClassOf   
  [  a owl:Restriction; 
      owl:onProperty  :hasGender; 
      owl:minCardinality 1 ]. 

 
 Although the OWL code in Table 1 and Table 2 provides a reasonable way to emulate the data models 
in Figure 1 and Figure 2, the semantics are not precisely the same. As discussed in a previous article [13], 
constraints specified in data models are not translated into actual constraints in OWL, but rather logical 
propositions that are understood in terms of open world semantics where some individuals may be 
unnamed. For example, declaring the subclass restriction “hasCountryCode min 1” for Country simply says that 
each country has a country code—it doesn’t require the system to know what that code is. The next section 
further illustrates how OWL’s support for unnamed individuals differs from what might be intuitively 
expected by users of typical database systems. 
 
 
HasKey vs InverseFunctional 
 
Declaring a predicate to be InverseFunctional in OWL is not quite the same as declaring a predicate to be a 
HasKey property. A declared InverseFunctional characteristic applies to the predicate for all its applicable 
subject classes, whereas each HasKey declaration applies to only a single subject class or class expression. 
Moreover, an InverseFunctional characteristic may be applied only to an object property, whereas both 
object properties and data properties can be declared as HasKey properties. Another important difference is 
that the uniqueness aspect of HasKey applies only to named individuals (i.e. individuals that are explicitly 
named by an IRI in the Abox (the set of fact assertions)). In contrast, InverseFunctional declarations apply 
to any kind of individual (named individuals, anonymous individuals, and individuals whose existence is 
implied by existential quantification) [20, sec. 9.5]. 
 We now illustrate this third difference with some simple examples. Consider the ORM schema 
displayed in Figure 3(a), which is used to record where politicians are born. In this case, we identify 
politicians simply by their IRIs (e.g. d:Obama, where d is the part of the IRI for the relevant document—in 
the following code, we as usual assume the current document, so “Obama” (in Manchester syntax) or 
“:Obama” (in Turtle) would suffice). In Figure 3(a) the lack of special punctuation (e.g. a dot or colon) in 
the reference mode “(IRI)” indicates that this is a general reference mode, so the value type IRI shown 
explicitly in Figure 3(b) can also be used to identify other entity types if desired. However, in this ORM 
model countries are identified by their country codes. In OWL, an entity can have multiple IRIs (e.g. 
:Venus owl:sameAs :TheMorningStar), but in this ORM model each politician has only one IRI. In ORM, 
fact roles may optionally be named, with their name displayed in square brackets beside the role (e.g. 
“birthCountry”). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 (a) Compact ORM schema, (b) expanded ORM schema, (c) relational schema, (d) sample data. 
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Figure 3(c) shows the relational database table scheme Politician (IRI, birthCountry) that NORMA generates 
from the ORM schema. Figure 3(d) shows the relational table populated with some sample data tuples 
(‘http://eg.org/#George-W-Bush’, ‘US’), (‘http://eg.org/#Obama’, ‘US’) and (‘http://eg.org/#JuliaGillard’, ‘GB’) to record the facts 
that George W. Bush and Obama were born in the USA and Julia Gillard was born in the United Kingdom. 
While this varied choice of identifiers for politicians and countries might be unusual, it is nevertheless 
possible to model things this way in data modeling approaches such as ORM, ER, UML and relational 
databases. Now let’s consider how one might model this example in OWL. 

The schema itself may be coded as shown in Table 3. In OWL, each class (in this case, Politician and 
Country) is typically understood to have an identification scheme based on IRIs. Although hasCountryCode 
is declared as a HasKey property for Country, each named individual that is an instance of Country has to 
be explicitly identified by an IRI in the fact base. 

 

Table 3 Coding the schema in Figure 3 in OWL 

Manchester Syntax Turtle Syntax 

ObjectProperty: wasBornInCountry 
  Domain: Politician 
  Range: Country 
  Characteristics: Functional 
 
DataProperty: hasCountryCode 
  Domain: Country 
  Range: xsd:string 
  Characteristics: Functional 
 
Class: Country 
  SubClassOf:  hasCountryCode min 1 
  HasKey:  hasCountryCode 
 

:wasBornInCountry  rdfs:domain  :Politician ; 
                         rdfs:range  :Country;  
                         a  owl:ObjectProperty; 
                         a  owl:FunctionalProperty. 

 
:hasCountryCode  rdfs:domain  :Country ; 
                              rdfs:range  :xsd:string;  
                              a  owl:DatatypeProperty;  

    a  owl:FunctionalProperty. 
 
:Country  rdfs:subClassOf   
  [  a owl:Restriction; 
      owl:onProperty  :hasCountryCode; 
      owl:minCardinality 1 ]. 
:Country  owl:hasKey  ( :hasCountryCode ). 

 
Given the schema in Table 3, the code in Table 4 asserts that Julia Gillard was born in some country 

that has country code “GB”. We could assert this without knowing which country has that country code. In 
Manchester syntax, we’ve used the nodeID “_:c1” as an anonymous variable for the unnamed country. As 
an alternative, we could instead use the following code: Individual:  JuliaGillard  Types:  wasBornInCountry some (  
hasCountryCode value "GB"). 

 

Table 4 Asserting a birth fact about an individual for the OWL schema in Table 3 

Manchester Syntax Turtle Syntax 

Individual:  JuliaGillard 
  Facts:  wasBornInCountry _:c1 
Individual:  _:c1 
  Facts:  hasCountryCode "GB" 

:JuliaGillard  :wasBornInCountry  [  :hasCountryCode  "GB"]. 
 

 
Now suppose we discover that the United Kingdom has the country code “GB” (chosen by ISO based 

on the long name “The United Kingdom of Great Britain and Northern Ireland”). Let’s choose “TheUK” as 
an intuitive IRI fragment for the United Kingdom. We can now add the code shown in Table 5 to assert that 
the UK has the country code “GB”.  
 

Table 5 Asserting that the United Kingdom has the country code “GB”  

Manchester Syntax Turtle Syntax 

Individual:  TheUK 
  Facts:  hasCountryCode "GB " 

:TheUK  :hasCountryCode  "GB". 
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 Given the OWL code in Table 3, Table 4 and Table 5, one might expect that it is correct to infer the 
fact that Julia Gillard was born in the United Kingdom, which may be expressed in Turtle thus:. 
 
  :JuliaGillard  :wasBornInCountry  :The UK. 
 
However, this fact does not follow! This is because HasKey declarations apply only to named individuals 
(those with IRIs explicitly asserted). So “:Country  owl:hasKey  ( :hasCountryCode ).” says that at most one named 
individual has a given country code, while allowing that there could be many unnamed individuals with 
that same country code. The assertion “:JuliaGillard  :wasBornInCountry  [  :hasCountryCode  "GB "].” says that Julia 
Gillard was born in some (i.e. at least one, perhaps more) country (which might be named or unnamed) that 
has the country code “GB”. So it is wrong to assume that this is the same as the named country (:TheUK) that 
has that country code. 
 This restriction of HasKey semantics to named individuals is designed to help ensure that inference 
rules using HasKey properties are “DL-safe” [18, sec. 9.5], so they will execute in a finite time. The basic 
idea is that we can explicitly name only a finite set of individuals, so by restricting rules to that input and 
applying only “finite operations” we ensure that the output from the rule is finite also.  
 Now consider the ORM schema in Figure 4(a). Here top politicians are identified by the country that 
they head, and their birth countries are also recorded. The birthcountry fact type is given a forward reading 
“TopPolitician heads Country” and an inverse reading “Country is headed by TopPolitician”. The fact roles played by 
instances of Country are named to determine the column names generated by NORMA for the relational 
schema shown in Figure 4(b). A sample population of the relational database table is shown in Figure 4(c). 
The tuple (‘AU’, ‘GB”) in the sample data records the fact that the top politician of Australia was born in 
the United Kingdom (to be more precise, Julia Gillard, the prime minister of Australia, was born in Wales). 
 
 
 
 
 
 
 
 

Figure 4 (a) An ORM schema, (b) its generated relational schema, and (c) a sample table population.  

 

 Table 6 shows one way to code the schema in OWL. The uniqueness constraint on the countryHeaded 
fact role in Figure 4(a) is captured by the inverse functional declaration for the headsCountry predicate.  
 

Table 6 Coding the schema in Figure 4 in OWL 

Manchester Syntax Turtle Syntax 

ObjectProperty: wasBornInCountry 
  Domain: Politician 
  Range: Country 
  Characteristics: Functional 
  InverseOf:  isBirthCountryOf 
 
ObjectProperty: headsCountry 
  Domain: TopPolitician 
  Range: Country 
  Characteristics: Functional, 
                            InverseFunctional 
 
DataProperty: hasCountryCode 
  Domain: Country 
  Range: xsd:string 

:wasBornInCountry  rdfs:domain  :TopPolitician ; 
                         rdfs:range  :Country;  
                         a  owl:ObjectProperty; 
                         a  owl:FunctionalProperty; 
                         owl:inverseOf  :isBirthCountryOf. 

 
:headsCountry  rdfs:domain  :TopPolitician ; 
                          rdfs:range  :Country;  
                          a  owl:ObjectProperty; 
                          a  owl:FunctionalProperty; 
                          a  owl:InverseFunctionalProperty. 
 
:hasCountryCode  rdfs:domain  :Country ; 
                              rdfs:range  :xsd:string;  
                              a  owl:DatatypeProperty;  
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  Characteristics: Functional 
 
Class: Country 
  SubClassOf:  hasCountryCode min 1 
  HasKey:  hasCountryCode 
 
Class: TopPolitician 
  SubClassOf:  headsCountry min 1 
  SubClassOf:  wasBornInCountry min 1 
 

    a  owl:FunctionalProperty. 
 
:Country  rdfs:subClassOf   
  [  a owl:Restriction; 
      owl:onProperty  :hasCountryCode; 
      owl:minCardinality 1 ]. 
:Country  owl:hasKey  ( :hasCountryCode ). 
 
:TopPolitician  rdfs:subClassOf   
  [  a owl:Restriction; 
      owl:onProperty  :headsCountry; 
      owl:minCardinality 1 ]. 
:TopPolitician  rdfs:subClassOf   
  [  a owl:Restriction; 
      owl:onProperty  :wasBornInCountry; 
      owl:minCardinality 1 ]. 

 
 Suppose we now add the facts shown in Table 7. The first fact uses a blank node to state that 
something (we know this is a top politician because of the earlier domain declaration) heads the country 
Australia and was born in the United Kingdom. The second fact says that Julia Gillard heads the country 
Australia. An alternative way to express the first fact in Manchester syntax is: Individual:  TheUK  Types:  
isBirthCountryOf  some (  headsCountry  Australia). 
 

Table 7 Adding some facts to the schema in Table 6 

Manchester Syntax Turtle Syntax 

Individual: _:p 
  Facts:  headsCountry  Australia, 
             wasBornInCountry  TheUK 
Individual:  JuliaGillard 
  Facts:  headsCountry  Australia 

[  :headsCountry  :Australia ]  :wasBornInCountry  :TheUK. 
 
 
:JuliaGillard  :headsCountry  :Australia. 
 

 
Unlike HasKey declarations, the inverse functional characteristic of headsCountry applies to all 

individuals, not just named individuals. So from the above facts, the following fact may be inferred 
(Manchester syntax shown on the left, Turtle syntax of the right). 
 

Individual: JuliaGillard     :JuliaGillard  :wasBornInCountry  :TheUK. 
  Facts:  wasBornInCountry  TheUK 

 
 
 
Conclusion 
 
The current article compared the different ways in which OWL 2, ORM, Barker ER and UML support 
simple identifiers. Compound identification schemes in OWL were briefly discussed in [7], but there is 
more to the story. The next article contrasts the support provided in OWL 2 and popular data modeling 
approaches for complex cases of identification schemes (compound identifiers, disjunctive reference, and 
context-dependent reference). 
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