
1 

Ontological Modeling: Part 2 
 

Terry Halpin 
LogicBlox 

 
 
 
 
 
 
This is the second in a series of articles on ontology-based approaches to modeling. The main focus is on 
popular ontology languages proposed for the Semantic Web, such as the Resource Description Framework 
(RDF), RDF Schema (RDFS), and the Web Ontology Language (OWL). OWL is based on description 
logic. A later series of articles will explore other logic-based languages such as Datalog. The previous 
article [2] provided a simple introduction to ontologies and the Semantic Web, and covered most of the 
basic concepts in the Resource Description Framework (RDF), contrasting them with other data modeling 
approaches. This second article discusses the N3 notation for RDF, and covers the basics of RDF Schema. 
 
 
Notation 3 for RDF (N3) 
 
As discussed in the previous article [2], RDF statements are essentially binary relationship instances 
represented as (subject, predicate, object) triples. Subjects and predicates are treated as resources, so are 
identified by Uniform Resource Identifier references (URIrefs), which provide document-independent, 
global identifiers, composed of a Uniform Resource Indicator (URI), optionally followed by “#” and a local 
fragment identifier (e.g. http://www.w3.org/TR/rdf-primer/#basicconcepts). Objects are either resources or 
literals (constants). Literals may be untyped (e.g. “Australia”) or typed (e.g. 63: xsd;nonNegativeInteger). 

While facilitating exchange, the lengthy identifiers provided by URIrefs lead to long-winded statement 
formulations. For example, the following statement, spread over three lines, might be used to declare 
CS600 as a course in a program offered at Galactic University.  

http://www.galacticUni.edu/programs#CS600  
http://www.w3.org/1999/02/22-rdf-syntax-ns#type  
http://www.galacticUni.edu/programs#Course   

Notice that the URI typically consumes most of the identifier. In this example, each URI is a Uniform 
Resource Location (URL). Imagine storing thousands of statements about academic programs at Galactic 
University in a single document housed at http://www.galacticUni.edu/programs. Almost all of these 
statements would use the same URL (http://www.galacticUni.edu/programs), which effectively provides a 
namespace in which names such as ‘CS600’ are locally identifying. It would be painful to keep on entering 
the same URL for all those statements. Mainly to save writing and improve readability, Tim Berners-Lee 
introduced a simplified notation for RDF called Notation 3 (N3). Among other tasks, Tim is the editor of a 
World Wide Web Consortium (W3C) committee that oversees the specification of the notation [3]. 
 In N3, you can predeclare namespace prefixes to denote URI namespaces, and then use those prefixes 
later as shorthand for full URIs when identifying resources. The prefixes are declared using an @prefix 
command to introduce a prefix name and the URI it abbreviates, with the URI (including #) delimited in 
angle brackets, i.e.   
 @prefix namespacePrefix <URI#>.  
Identifiers using such namespace prefixes are called qualified names (qnames), and are formed by 
prepending the prefix to a colon “:” followed by the local identifier. The BNF syntax is:  
 qname ::= namespacePrefix : name  
When qnames are used, statement triples are terminated by a period “.”. For example, suppose we declare 
the prefixes rdf and gup as follows:   



2 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>  
@prefix gup: < http://www.galacticUni.edu/programs#>  

The previous fact about CS600 may now be formulated more briefly as follows.  
gup:CS600  rdf:type  gup:Course.  

Using the previous prefix declarations, this N3 statement is interpreted as equivalent to the longer RDF 
statement mentioned earlier. N3 treats “a” as a reserved word that is shorthand for “rdf:type”, so the above 
statement may be shortened even further to:  

gup:CS600 a  gup:Course.  
In English, you can read this as “In the context of the gup namespace, CS600 is a Course”, where “is a” 
means “is an instance of”. Here the terms CS600, a, and Course are effectively being used within the 
declared namespace to denote a resource. They are like individual constants within the scope of the 
declared namespace. Informally, you probably thought of ‘CS600’ as a course code, but the RDF statement 
doesn’t actually tell us this. If you want to state this explicitly, you could add a statement such as:  

gup:CS600 gup:hasCourseCode  “CS600”.  
There is no requirement in RDF to identify the type of a resource. So we could make a statement such 

as the following without knowing that CS600 is a course.  
gup:CS600 gup:hasCreditPointValue “10”.  

 Notice that this way of making statements about things that could be untyped is very different from the 
way things are done in information modeling approaches such as Object-Role Modeling (ORM), the 
Unified Modeling Language (UML) and Entity Relationship modeling (ER) [1]. In each of those 
approaches, we would declare a Course type (e.g. a Course entity type or a Course class) and treat ‘CS600’ 
as a course code of an instance of that type.  
 In N3, the prefix in a qname may be empty, so the qname starts with a colon (e.g. :CS600). By default, 
the empty prefix “” treats the namespace to be the local document. For example, if we are currently at the 
location http://www.galacticUni.edu/programs, then the following three statements  

gup:CS600 a  gup:Course. 
gup:CS600 gup:hasTitle “Advanced Informatics”. 
gup:CS600 gup:hasCreditPointValue “10”.  

may be written more briefly as  
:CS600 a  :Course. 
:CS600 :hasTitle “Advanced Informatics”. 
:CS600 :hasCreditPointValue “10”.  

 As a further abbreviation, N3 allows use of a semicolon to assume the same subject. So the above 
three statements about the subject CS600 may be declared more briefly thus:  

:CS600 a  :Course; 
:hasTitle “Advanced Informatics”; 
:hasCreditPointValue “10”.  

In general, a statement list of the form  
 subject1 predicate1 object1. 
 subject1 predicate2 object 2. 
 … 
 subject1 predicaten objectn.  
 may be abbreviated to  
 subject1 predicate1 object1;  
  predicate2 object 2;  … 
  predicaten objectn.  



3 

As another abbreviation, N3 allows use of a comma to assume the same subject and predicate. In other 
words, you can use a comma as a separator in an object list. Consider, for example, the following two 
statements (presumably made in a biblical namespace):  
 :Adam :isFatherOf :Cain. 
 :Adam :isFatherOf :Abel.  
Here we have the same subject and predicate applied to two objects. Using a comma to separate the objects, 
these two statements may be abbreviated thus:  
 :Adam :isFatherOf :Cain, :Abel.  
 Before introducing the next aspect of N3, let’s review some basic logic. Suppose we are given the 
following dictionary, where a is an individual constant, P is a unary predicate, and B is a binary predicate.  
 a = Australia 
 Px = x is a person 
 xBy = x was born in y  
The proposition ‘Somebody was born in Australia’ may be expressed in predicate logic as follows, using ∃ 
for the existential quantifier (there exists), and & for conjunction (logical and).  
 ∃x(Px & xBa)  
Using the dictionary supplied, you can read this as: there exists something (let’s call it x), such that x is a 
person and x was born in Australia.  
 N3 has various ways to support existential quantifiers. The most common way is to use square 
brackets to enclose triples that have the same “blank node” as their subject. The term “blank node” may be 
shortened to “bnode”. A blank node in RDF is like an anonymous variable in Prolog or Datalog, and may 
be read as “something”. However, in N3 you can have multiple anonymous variables (e.g. _:x, _:y) using 
the same variable within a formula to indicate binding to the same existential quantifier. This can also be 
accomplished by the square bracket notation, since all predicate-object pairs within the same square 
brackets are understood to be bound to the same, implicit, existential quantifier. For example, assuming the 
namespace is the current document, the proposition ‘Somebody was born in Australia’ (i.e. ∃x(x is a person 
& x was born in Australia)) may be expressed in N3 using a blank node thus:  
 [ a :Person; :wasBornIn :Australia ].  
 In general, a blank node formula is equivalent to an existentially quantified formula as shown below. 
A blank node has scope only within its immediate expression. No nesting of blank node expressions is 
permitted.  
 [ predicate object ]  ≡ ∃x(x predicate object)  
 If a blank node expression is used as the object of an outer predicate, then the existential quantifier is 
understood to prepend the outer subject. Using a for the initial subject, R and S for predicates, and b for the 
final object, the following equivalence applies.  
 a R [ S b ]  ≡ ∃x(aRx & xSb)  
i.e., a R [ S b ] may be read as a R’s something that S’s b.  
 For example, assuming the local namespace, the following expression may be used to translate the 
proposition ‘Terry is a parent of somebody who was born in Australia’:  
 :Terry :isParentOf [ a :Person; :wasBornIn :Australia].  
As an example with two blank nodes, and assuming the local namespace, the following expression 
translates the proposition ‘Somebody with family name ‘Obama’ is president of some country’:  
 [ a :Person; :hasfamilyName “Obama”] :isPresidentOf [ a :Country].  
In predicate logic this corresponds to  
 ∃x(Person x & x hasFamilyName ‘Obama’ & ∃y(x isPresidentOf y & Country y))  



4 

Person

MaleSinger

Singer

C

A

 BA

e.g.

 Note that relational databases as well as popular information modeling approaches such as ORM, 
UML and ER typically do not store existential statements like those just considered. Such statements can 
easily be derived from more specific data, but it would be highly unusual to store them in that form. This 
again reflects the freedom in RDF to basically say whatever you want.  

In addition to providing a more compact and readable syntax for RDF, N3 includes quantifiers (e.g. 
@forAll and @forSome) to facilitate the formulation of rules, and it also allows braces “{”, “}” to be used 
for quoting so that statements can be made about statements. Further details about these and other features 
may be found on the N3 Website [3].  
 
 
Basics of RDF Schema (RDFS) 
 
RDF Schema (RDFS) builds on RDF by adding formal support for classes and subclassing, which we now 
discuss. In addition, RDFS supports specialization and subsetting of predicates (see next article). The full 
specification of RDFS is available on a W3C Website [4]. Resources may be typed as instances of classes 
using the predefined rdfs:Class. For example, Person and Book may be declared to be classes thus:  
 :Person  rdf:type  rdfs:Class. 
 :Book  rdf:type  rdfs:Class.  
Using N3’s “a” to abbreviate “rdf:type”, these type declarations may be rendered more briefly thus:  
 :Person  a  rdfs:Class. 
 :Book  a  rdfs:Class.  

In RDFS, use of the rdf:type (or N3 ‘a’) predicate implies that the object is a class. For example, the 
following statement asserts not only that the resource :Elvis is an instance of the resource :Singer, but also 
that :Singer is a class.   
 :Elvis  a  :Singer.  
 RDFS predefines the rdfs:subClassOf predicate to indicate that the subject is a subclass of the object. 
A statement of the form A rdfs:subClassOf B also implies that both A and B are classes. The 
rdfs:subClassOf predicate is transitive, allowing simple inferences to be drawn. For example, given any 
resources A, B and C, the following two statements  
 A rdfs:subClassOf B 
 B rdfs:subClassOf C    
enable us to infer  

 A rdfs:subClassOf C.  
For example, given   

:MaleSinger  a  :Singer. 
:Singer  a  :Person.  

we may infer :MaleSinger a :Person.  
Using “⊆” for “is a subclass of”, “&” for “and”, and “→” for “implies”, this transitivity rule may be 

written thus: (A ⊆ B & B ⊆ C) → A ⊆ C. We can picture this graphically as shown in Figure 1. 
 
 
 
 
 
 
 
 

Figure 1  Subclassing is transitive: (A ⊆ B & B ⊆ C) → A ⊆ C. 



5 

a

C

a

C

Elvis

Singer

Person

Elvis

Person

B
e.g.

R

Domain Range

has square

Domain Range

-1

1

0

4

0
2

-2

1

(a) (b)

e.g.

 Further inferences may be drawn by using the rdf:type and rdfs:subClassOf predicates in combination. 
Given any resources a, B and C, where a is in instance of B, and B is a subclass of C, we may infer that a is 
an instance of C. For example, from  
 :Elvis  a  :Singer. 
 :Singer  rdfs:subClassOf  :Person.  
we may infer  
 :Elvis  a  Person.  

Using “∈” for “is an instance of” and “⊆” for “is a subclass of”, this composite transitivity rule may 
be written thus: (a ∈ B & B ⊆ C) → a ∈ C. We can picture this graphically as shown in Figure 2. 
 
 
 
 
 
 
 

Figure 2 Composite transitivity: (a ∈ B & B ⊆ C) → a ∈ C. 

 
In mathematics, binary relations are often treated as sets of ordered pairs, indicating how elements in 

the domain (the set of elements on the left-hand side) map to elements in the range (the set of elements on 
the right-hand side of the relation). Figure 3(a) depicts an abstract example of a many-to-one (n:1) relation 
where one or more items in the domain map to a single item in the range. Binary relations may also be 1:n, 
m:n, or 1:1. Figure 3(b) depicts a concrete example, using the binary predicate has_square, where the 
domain is the set of numbers {-2, -1, 0, 1, 2} and the range is the set {0, 1, 4}.  
 
 
 
 
 
 
 
 
 

Figure 3. A binary relation maps domain items to range items. 

  
RDFS effectively allows predicates to be “typed”, by restricting their domain and range to a specified 

class. The predefined predicate rdfs:domain (meaning “has domain”) is used to restrict a predicate’s subject 
to a given domain. The predefined predicate rdfs:range (meaning “has range”) is used to restrict a 
predicate’s object to a given domain. The syntax is thus:  

predicate rdfs:domain domain. 
predicate rdfs:range range.  

For example, consider Person drives Car as an ORM fact type, ER relationship, or UML association. In RDFS 
you can declare this roughly as follows:  
 :drives  rdfs:domain  :Person. 
 :drives  rdfs:range  :Car.  
The object of an rdfs:domain predicate or rdfs:range predicate is implied to be a class, so the above two 
statements imply that :Person and :Car are classes. 
 RDFS allows the same predicate to be assigned multiple domains; in which case, instances of its 
subject are restricted to the intersection of those domains. Similarly, a predicate may be assigned multiple 



6 

ranges, thus satisfying all of them. Hence each declared subject of a predicate is known to belong to the 
domain(s) of that predicate, and each declared object of a predicate is known to belong to the range(s) of 
that predicate. For example, from the following three statements  
 :sings  rdfs:domain  :Person. 
 :sings  rdfs:range  :Song. 
 :Elvis  :sings  :AllShookUp.  
we may infer the following two statements:  
 :Elvis  a  :Person. 
 :AllShookUp  a  :Song.  
 
Conclusion 
 
This article introduced the N3 notation for the Resource Description Framework (RDF), and then discussed 
basic features of RDF Schema (RDFS). The next article will complete the coverage of RDFS, and provide 
an overview of different flavors of the Web Ontology language (OWL). Later articles will examine OWL 
in some depth. 
 
References 
 
1. Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, 2nd edition, Morgan 

Kaufmann, San Francisco. 
2. Halpin, T. 2009, ‘Ontological Modeling: Part 1’, Business Rules Journal, Vol. 10, No. 9 (Sep. 2009), 

URL: http://www.BRCommunity.com/a2009/b496.html. 
3. W3C 2006, ‘Notation 3 (N3): A Readable RDF Syntax’, Ed. T. Berners-Lee, URL: 

http://www.w3.org/DesignIssues/Notation3. 
4. W3C 2004, ‘RDF Vocabulary Description Language 1.0: RDF Schema’, URL: 

http://www.w3.org/TR/rdf-schema/. 

http://www.brcommunity.com/a2009/b496.html�

