
1

lexicalForm: String

Literal

IRI
entityIRI

arity: UnlimitedNatural

NamedIndividualClass ObjectProperty DataProperty

AnnotationProperty

DataType

1

1 datatype nodeID: String

AnonymousIndividual

Ontological Modeling: Part 5

Terry Halpin
LogicBlox and INTI International University

This is the fifth in a series of articles on ontology-based approaches to modeling. The main focus is on
popular ontology languages proposed for the Semantic Web, such as the Resource Description Framework
(RDF), RDF Schema (RDFS), and the Web Ontology Language (OWL). OWL is based on description
logic. A later series of articles will explore other logic-based languages such as datalog. The first article [3]
introduced ontologies and the Semantic Web, and covered basic concepts in the Resource Description
Framework (RDF), contrasting them with other data modeling approaches. The second article [4] discussed
the N3 notation for RDF, and covered the basics of RDF Schema. The third article [5] provided further
coverage of RDFS, and introduced different flavors of the Web Ontology language (OWL). The fourth
article [6] discussed basic features of OWL, mainly using Manchester syntax. The current article explores
OWL in more depth.

Some OWL Taxonomy

From now on, we use the term “OWL” by default for version 2 of OWL (OWL 2). Figure 1 shows a class
diagram in the Unified Modeling Language (UML) notation for several concepts in OWL. This diagram is
based on a figure in one of the many World Wide Web Consortium (W3C) documents on OWL [10]. Many
of the terms in the figure have been discussed briefly in earlier articles. What we called “resources” in our
discussion of RDF are now called “entities” in OWL. OWL entities may be named individuals, classes,
properties (binary predicates), or data types. This differs somewhat from the use of the term “entity” in
Object-Role Modeling (ORM) [2] and Entity Relationship modeling (ER), where all entities are non-lexical
individuals (not types or classes).

In OWL, entities are identified by Internationalized Resource Identifiers (IRIs) [1], but unlike some
approaches, OWL does not adopt the Unique Name Assumption (UNA). So in OWL the same entity may be
assigned different IRIs, even within the same document. Hence the multiplicity constraint of 1 on entityIRI
in Figure 1 should instead be 1..* (1 or more). As discussed earlier [6], OWL includes the SameAs
predicate to indicate when two different IRIs denote the same entity (e.g. DownUnder SameAs Australia).

Literals (data values such as names or numerals) are not treated as individuals. This practice differs
from formal logic, where literals do count as individuals. Only OWL individuals (not literals) may be
members of OWL classes. Recall that owl:Thing is predefined as the class of all individuals, and
owl:Nothing is the empty class. In description logic, owl:Thing and owl:Nothing are called the top concept
and bottom concept respectively.

Figure 1 A UML class diagram of some basic OWL concepts, based on [10].

2

Object properties are binary predicates that relate entities to entities. Data properties are binary
predicates that relate entities to literals. Here are some simple examples in Manchester Syntax:

ObjectProperty: wasBornIn
DataProperty: hasName
Individual: Einstein

Facts: wasBornIn Germany, hasName "Albert Einstein"^^xsd:string

The following extreme OWL predicates (“properties”) are predefined. The owl:topObjectProperty is
the class of all object properties, and hence is a binary predicate relating all individuals in the model to all
individuals in the model (its population is the Cartesian product Thing  Thing). Every object property is a
subproperty of this property. The owl:topDataProperty is the class of all data properties, and hence is a
binary predicate relating all individuals to all literals. Every data property is a subproperty of this property.
The owl:bottomObjectProperty is the empty object property, and hence is a subproperty of every object
property. The owl:bottomDataProperty is the empty data property, and hence is a subproperty of every data
property.
 Annotation properties are binary predicates that provide informal documentation annotations about
ontologies, statements, or IRIs. For instance, the rdfs:comment annotation property is used to provide a
comment. Table 1 shows a simple example.

Table 1 OWL example of adding a comment as an annotation property

Manchester Syntax Turtle Syntax

Class: Moon
 Annotations: rdfs:comment "Natural satellite of a planet
or other celestial body."

:Moon rdfs:comment "Natural satellite of a planet or
other celestial body.".

Other predefined annotation properties are shown below:

 The rdfs:label annotation property is used to provide a human-readable label.
 The rdfs:seeAlso annotation property is used to provide an IRI with another IRI such that the latter

provides additional information about the former.
 The rdfs:isDefinedBy annotation property is used to provide an IRI with another IRI where the

latter provides a definition of the former
 An annotation with the owl:deprecated annotation property and the value equal to

"true"^^xsd:boolean is used to specify that an IRI is deprecated.
 The owl:versionInfo annotation property is used to provide an IRI with a string that describes the

IRI's version.
 The owl:priorVersion annotation property specifies the IRI of a prior version of the containing

ontology.
 The owl:backwardCompatibleWith annotation property specifies the IRI of a prior version of the

containing ontology that is compatible with the current version of the containing ontology
 The owl:incompatibleWith annotation property specifies the IRI of a prior version of the

containing ontology that is incompatible with the current version of the containing ontology

OWL tools typically support ontology parsing—the process of converting an ontology document
written in a particular syntax into an OWL ontology. Depending on the syntax used, the ontology parser
may need to know which IRIs are used for which kinds of entity (e.g. is a predicate an object property, data
property, or annotation property?). For example, is wasBornIn an object property or a data property? This
typing information can be extracted from declarations—axioms that associate IRIs with entity types (e.g.
ObjectProperty: wasBornIn).

3

Comparing Classes or Datatypes

The previous article [6] discussed the use of the EquivalentTo predicate (Manchester syntax) or
owl:equivalentClass predicate (Turtle syntax) for declaring equivalence between two classes or class
expressions. In Manchester syntax. “EquivalentTo” may also be used to define a data range. For example,
the datatype RatingNr may be confined to {1..7} thus:

 Datatype: RatingNr
 EquivalentTo: integer[>=1, <=7]

 Turtle still uses owl:equivalentClass in combination with restrictions for this task, even though classes
and data types are considered disjoint. When the values in the data range comprise a small finite list (as in
the above case) the data range may also be specified using an enumerated type (see later article).
 The previous article [6] discussed the use of the DisjointWith predicate (Manchester syntax) or
owl:disjointWith predicate (Turtle syntax) for declaring that two classes (or class expressions) are disjoint
(i.e. mutually exclusive). The class DisjointClasses (Manchester syntax) or owl:AllDisjointClasses (Turtle
syntax) is predefined to be a class whose members are pairwise exclusive (i.e. each pair of member classes
are disjoint). This provides an efficient way to declare that many classes are pairwise disjoint.

In ORM, top level entity types are assumed to be mutually exclusive. For example, in the ORM
schema in Figure 2(a), if Person, Car, and Dog are not subtypes, then they are assumed to be disjoint. In
OWL however, this disjointness needs to be explicitly stated, as shown in the first statement of Figure 2(b).
Here the domain and range specifications restrict the predicates to the object types indicated.

Figure 2 Declaring some fact types in (a) ORM and (b) OWL (using Manchester syntax).

The single statement using DisjointClasses is equivalent to the lengthier approach of using
DisjointWith to declare disjointness between each pair, which in Manchester syntax may be formulated as:

Class: Person
DisjointWith: Car, Dog

Class: Car
DisjointWith: Dog

When using owl:AllDisjointClasses predicate in Turtle syntax, a blank node “[]” (read as

“something”) is typically used as the subject and the owl:members predicate is typically used to list
members. For our current example, this leads to the following Turtle formulation:

[] a owl:AllDisjointClasses ;
owl:members (:Person :Car :Dog).

Disjoint classes have no individual in common. Recall that the DifferentFrom predicate is used to

declare inequality between individuals [6]. Hence, given the following statements (in Manchester syntax)

Individual: Adam
Types: Man

Individual: Eve
Types: Woman

DisjointClasses: Man, Woman

we may infer

Individual: Adam
 DifferentFrom: Eve

4

Person Book

authored

reviewed

Comparing Predicates

Previous articles discussed the use of the rdfs:SubPropertyOf predicate for declaring that all (subject,
object) instances of one predicate must be instances of another predicate. In Manchester syntax, this
predicate subsetting is declared with the SubPropertyOf predicate, e.g.

 ObjectProperty: isFatherOf

SubPropertyOf: isaParentOf

If two predicates must always have the same instance populations, they are said to be (materially)
equivalent. This is the same as declaring a subPropertyOf relationship in both directions. In Manchester
syntax, equivalence between predicates is declared by listing the predicates after the EquivalentProperties
header. In Turtle, the generic owl:equivalentProperty predicate may be used (if the predicates haven’t
already been declared as object or data properties, it’s better to use the more specific
owl:equivalentObjectProperty or owl:equivalentDataProperty).

Table 2 shows some examples. The first example might be used to assert the constraint that people
drive a car if and only if they own the car (this constraint does actually apply in some taxi companies). In
ORM, this could be expressed as a pair-equality constraint between the predicates, but it would be more
efficient to simply collapse the predicate into one (ownsAndDrives). The second example could be used to
support synonyms for predicate readings in the same document (or different documents). A third use of
equivalent properties is to specify derivation rules for derived predicates.

Table 2 Constraining different predicates to always have identical populations

Manchester Syntax Turtle Syntax

EquivalentProperties: owns, drives

:owns owl:equivalentProperty :drives.

EquivalentProperties: worksFor,
 isEmployedBy

:worksFor owl:equivalentProperty
 :isEmployedBy.

The DisjointWith predicate (Manchester syntax) or owl:propertyDisjointWith predicate (Turtle syntax)

may be used to indicate that the populations of binary predicates must be mutually exclusive. This is
equivalent to a pair-exclusion constraint in ORM. For example, in Figure 3 the circled “X” connected to the
two predicates graphically depicts the exclusion constraint that no person authored and reviewed the same
book. This constraint may be declared in Manchester and Turtle syntax as shown in Table 3.

Figure 3 A pair-exclusion constraint in ORM to ensure that nobody reviews a book that he/she authored.

Table 3 Constraining different predicates to always have mutually exclusive populations

Manchester Syntax Turtle Syntax

ObjectProperty: authored
 Domain: Person
 Range: Book
ObjectProperty: reviewed
 Domain: Person
 Range: Book
 DisjointWith: authored

:authored rdfs:domain :Person.
:authored rdfs:range :Book.
:reviewed rdfs:domain :Person.
:reviewed rdfs:range :Book.
:authored owl:propertyDisjointWith
 :reviewed.

5

WordPerson
(.name)

misspelt / was misspelt by

is a synonym for

Tim Jones gorse

gorse furze

If more than two predicates are mutually exclusive, it’s more efficient in Manchester syntax to simply list
them after the DisjointProperties header, e.g.

 ObjectProperty: gotFirstPlaceIn
 ObjectProperty: gotSecondPlaceIn
 ObjectProperty: gotThirdPlaceIn
 DisjointProperties: gotFirstPlaceIn, gotSecondPlaceIn, gotThirdPlaceIn

More about Inverses, Functional Roles, and Keys

The previous article [6] introduced the notions of inverse predicates, functional and inverse functional
characteristics, and HasKey predicates in OWL. We now discuss these in more depth. In logic, a binary
predicate R is the inverse of a binary predicate S if and only if, given any individuals x and y, xRy if and
only if ySx. For example, isaChildOf is the inverse of isaParentOf. In ORM, a slash “/” is used to separate
forward and inverse predicate readings (as in Figure 4).

Figure 4 An ORM fact type with forward and inverse predicate readings

An object property (or object property expression) in OWL may be declared to be the inverse of

another other object property (or object property expression) by prepending “InverseOf: ” to the inverse
predicate (Manchester syntax) or using the owl:inverseOf predicate (Turtle syntax). For example, the
forward and inverse predicates in Figure 4 may be declared in OWL as shown in Table 4.

Table 4 Declaring inverse predicates in OWL

Manchester Syntax Turtle Syntax

ObjectProperty: isaChildOf
 InverseOf: isaParentOf

:isaChildOf owl:inverseOf :isaParentOf.

OWL does not allow an inverse to be declared for a data property, partly because it never allows a

literal to be the subject of a predicate. This is an unfortunate restriction, because we may wish to talk about
literals. Consider, for example, the ORM model in Figure 5. OWL lets us declare the data property
misspelt, but not its inverse wasMisspeltBy. Moreover, OWL does not let us assert the synonym fact at all.
To work around such problems in OWL, you have to cheat, for example by treating Word as an entity type
rather than as a value type (literal type).

Figure 5 In ORM, a literal may appear as the subject of a predicate

By default, all OWL predicates are optional and many-to-many (m:n). To add a uniqueness constraint

to the subject role of a binary predicate (object property or data property), declare the predicate to be
functional, so that the object is a function of the subject (i.e. for each subject there is at most one object).

6

Figure 6 Four ORM fact types involving functional predicates

Figure 6 depicts four ORM fact types involving functional (in this case, n:1) predicates. In information

modeling approaches such as ORM, ER, and UML, the two wasBornIn predicates would be treated as
different predicates/relationships/associations. However, in OWL we may treat these instead as different
occurrences of the same predicate, simply by assigning them the same IRI. A similar situation applies for
the two hasName predicate occurrences (in ER and UML, these predicates would typically be modeled
instead as attributes).

In OWL, if you declare a predicate to be functional, this applies globally to all occurrences of the
predicate in the model. For example, the declarations in Table 5 assert that the subject roles of wasBornIn
and hasName are functional in every fact type in which they occur (e.g. the fact types in Figure 6 as well as
any other fact types involving these predicates).

Table 5 Declaring functional predicates in OWL

Manchester Syntax Turtle Syntax

ObjectProperty: wasBornIn
 Characteristics: Functional

:wasBornIn a owl:ObjectProperty,
 owl:FunctionalProperty.

DataProperty: hasName
 Characteristics: Functional

:hasName a owl:DatatypeProperty,
 owl:FunctionalProperty.

If a predicate is an object property, you can add a uniqueness constraint to its object role by declaring

the predicate as an inverse functional property. In Manchester syntax, include InverseFunctional as a
characteristic of the predicate. In Turtle, declare the predicate as an instance of
owl:InverseFunctionalProperty. Inverse functional declarations apply globally to all occurrences of the
predicate. For example, the two manages predicates in the ORM model in Figure 7 may be treated as two
occurrences of the same predicate in OWL by assigning them the same IRI. The inverse functional nature
of the predicate may then be declared as shown in Table 6.

Figure 7 Two ORM fact types involving inverse functional predicates

Table 6 Declaring an inverse functional predicate in OWL

Manchester Syntax Turtle Syntax

ObjectProperty: manages
 Characteristics: InverseFunctional

:manages a owl:ObjectProperty,
 owl:InverseFunctionalProperty.

 OWL does not allow a data property to be declared inverse functional. This restriction is again
unfortunate, but is consistent with OWL’s forbidding of inverses of data properties. In practice, many data
properties are either 1:1 or 1:n, thus requiring a uniqueness constraint on the role played by the literal.
Although we can’t declare uniqueness constraints on roles played by literals as inverse functional
characteristics, we can specify such constraints using HasKey declarations.

7

Room

has
RoomNr

is in
Building BuildingNr

has Room

has
RoomNr

is in
Building BuildingNr

has

(a) (b)

Figure 8 Two ORM fact types involving inverse functional predicates

The HasKey feature, introduced in OWL 2, partly addresses the need to specify identification schemes

(simple or compound) for entity types. For example, consider the ORM schema in Figure 8(a). Here each
building is identified by its building number, and each room is identified by combining its local room
number with its building. The large dots depict mandatory role constraints (each building has a building
number, and each room is in a building and has a room number). Each bar over a role depicts a simple
uniqueness constraint, and the circled bar depicts an external uniqueness constraint.

In OWL, the hasBuildingNr predicate would be treated as a key predicate for Building, and the
isInBuilding and hasRoomNr predicates would collectively be treated as key predicates for Room. This
may be specified as shown in Table 7.

Table 7 Declaring key predicates in OWL

Manchester Syntax Turtle Syntax

Class: Building
 HasKey: hasBuildingNr
Class: Room
 HasKey: isInBuilding, hasRoomNr

:Building owl:hasKey (:hasBuildingNr).
:Room owl:hasKey (:isInBuilding :hasRoomNr).

 The OWL 2 Primer [7] includes the following claim about keys (my bolding):

“In OWL 2 a collection of (data or object) properties can be assigned as a key to a class
expression. This means that each named instance of the class expression is uniquely identified by
the set of values which these properties attain in relation to the instance."

A literal reading of this claim suggests that key declarations in OWL provide full identification schemes for
entity types, which would entail all the mandatory role and uniqueness constraints shown in Figure 8.

However, the formalization in the OWL 2 direct semantics document [8] indicates that declaring one
or more key properties for a class expression simply asserts that each related object set relates to at most
one subject. This entails that in this example, only the right-hand uniqueness constraints are captured by the
key declarations, as shown in Figure 8(b). In that case, further declarations would be needed to capture the
left-hand uniqueness constraints (e.g. by declaring the predicates to be functional) and mandatory role
constraints (see next article). With this interpretation, OWL keys capture only part of the notion of keys in
database modeling. Given that the direct semantics document provides a formalization, it's safer to assume
that the direct semantics document is correct in this regard and hence that the above claim from the primer
is misleading.

Conclusion

This article covered further aspects of OWL 2, discussing terminology (e.g. object, data, and annotation
properties), comparison operators on classes, datatypes, and predicates, and then explored inverses,
functional characteristics and HasKey predicates in more depth.

Functional and inverse functional declarations apply globally to the predicate in all its contexts. In
contrast, OWL cardinality constraints apply only locally to the domain classes being introduced in a local
context. This local nature of cardinality restrictions differs markedly from the usual approach in
information modeling. Another major difference between OWL and data modeling approaches is that OWL
schemas do not constrain fact populations to conform in the way that database models do. For example, if

8

you assert that each parent has at least one child, and that Obama is a parent, no check will be made to
ensure that some named individual is declared as a child of Obama. I’ll have more to say about such
differences in following articles, as well as discussing further features of OWL 2.

References

1. Duerst, M. & Suignard, M. 2005, ‘RFC 3987: Internationalized Resource Identifiers (IRIs)’, IETF,
January 2005. URL: http://www.ietf.org/rfc/rfc3987.txt.

2. Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, 2nd edition, Morgan
Kaufmann, San Francisco.

3. Halpin, T. 2009, ‘Ontological Modeling: Part 1’, Business Rules Journal, Vol. 10, No. 9 (Sep. 2009),
URL: http://www.BRCommunity.com/a2009/b496.html.

4. Halpin, T. 2009, ‘Ontological Modeling: Part 2’, Business Rules Journal, Vol. 10, No. 12 (Dec. 2009),
URL: http://www.BRCommunity.com/a2009/b513.html.

5. Halpin, T. 2010, ‘Ontological Modeling: Part 3’, Business Rules Journal, Vol. 11, No. 3 (March 2010),
URL: http://www.BRCommunity.com/a2010/b527.html.

6. Halpin, T. 2010, ‘Ontological Modeling: Part 4’, Business Rules Journal, Vol. 11, No. 6 (June 2010),
URL: http://www.BRCommunity.com/a2010/b539.html.

7. W3C 2009, ‘OWL 2 Web Ontology Language: Primer’, URL: http://www.w3.org/TR/owl2-primer/.
8. W3C 2009, ‘OWL 2 Web Ontology Language: Direct Semantics’, URL: http://www.w3.org/TR/owl2-

direct-semantics/.
9. W3C 2009, ‘OWL 2 Web Ontology Language Manchester Syntax’, URL:

http://www.w3.org/TR/owl2-manchester-syntax/.
10. W3C 2009, ‘OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax’,

URL: http://www.w3.org/TR/owl2-syntax/.

