Ontological Modeling: Part 6

Terry Halpin
LogicBlox and INTI International University

This is the sixth in a series of articles on ontology-based approaches to modeling. The main focus is on
popular ontology languages proposed for the Semantic Web, such as the Resource Description Framework
(RDF), RDF Schema (RDFS), and the Web Ontology Language (OWL). OWL is based on description
logic. A later series of articles will explore other logic-based languages such as datalog. The first article [2]
introduced ontologies and the Semantic Web, and covered basic concepts in the Resource Description
Framework (RDF), contrasting them with other data modeling approaches. The second article [3] discussed
the N3 notation for RDF, and covered the basics of RDF Schema. The third article [4] provided further
coverage of RDFS, and introduced different flavors of the Web Ontology language (OWL). The fourth
article [5] discussed basic features of OWL, mainly using Manchester syntax. The fifth article [6] discussed
OWL taxonomy, comparison operators for classes, data types and predicates, and examined inverses,
functional roles and keys in more depth. The current article provides a detailed coverage of cardinality
restrictions in OWL 2.

Unqualified Cardinality Restrictions in OWL 2

An earlier article [4] provided basic coverage of cardinality restrictions in OWL 1. We now provide a
deeper coverage of cardinality restrictions, as defined in OWL 2 [7]. Unless otherwise indicated, we
henceforth use “OWL to mean “OWL 2”. OWL statement triples are the form (subject, predicate, object).
OWL properties are binary predicates that map instances of a class (called the domain of the relation) to
instances of a class or datatype (called the range of the relation). By default, OWL properties are many-to-
many (m:n) relationships with each role optional for its type. Figure 1 provides an abstract example of this
situation.

Declaring a predicate to be functional adds a uniqueness constraint to its first role (so each subject
instance relates to at most one object). Declaring an object property (entity to entity relationship) to be
inverse functional adds a uniqueness constraint to its second role (so each object relates to at most one
subject). Data properties (entity-to-literal relationships) cannot be declared to be inverse functional.

Roughly speaking, cardinality restrictions in OWL provide one way to specify constraints that in the
Unified Modeling Language (UML) are known as multiplicity constraints and in Object-Role Modeling
(ORM) [1] involve mandatory role constraints, uniqueness constraints, and/or frequency constraints. As
we’ll see, cardinality restrictions go further by allowing you to apply these constraints to specific domains
(e.g. subclasses or even individuals) and specific ranges. This differs from functional and inverse functional
declarations, which always apply globally to the predicate in all its contexts [6].

The class owl:Thing is the class of all individuals, and is said to be unrestricted. A class expression
may be specified as a hamed or unnamed subclass of owl:Thing by declaring it to be a restriction (an
instance of the class owl:Restriction) obtained by applying some condition (e.g. a cardinality constraint) to
a predicate (object of the owl:onProperty predicate).

For a given predicate R with domain A and range B, minCardinality is the mininum number of
instances of B to which each population instance of the subject class A relates via R (cf. minMultiplicity in
UML). To declare the first role of R to be mandatory for the subject class A, you can assign a minimum
cardinality of 1 (at least). We now illustrate this with an example.

A B

Domain Range

Figure 1 The predicate R maps instances of domain A to instances of range B. Here, R is m:n with roles optional.

(@)) (b) was born in
was born in

Person

was born in

Figure 2 Some different options in ORM for constraining persons to be born somewhere.

Figure 2(a) is an ORM schema with the fact type Person was born in Location, with Location partitioned
into three subtypes. For simplicity, reference schemes are omitted. The large dot attached to Person’s role
in the birth fact type depicts a mandatory role constraint, which verbalizes as: Each Person was born in some
Location. In this model, we must know at least one birth location (possibly two or three, depending partly on
how complete our knowledge is) for each person. The bar over the birth predicate depicts a spanning
uniqueness constraint, indicating that the fact type is m:n and that its fact entries are unique.

Figure 2(b) shows an alternative ORM schema, with three fact types: Person was born in Hospital; Person
was born in City; Person was born in Country. The circled dot is an inclusive-or constraint (also known as a
disjunctive mandatory role constraint), which may be verbalized as: Each Person was born in some Hospital or
some City or some Country. The bars over the roles played by Person denote uniqueness constraints: Each Person
was born in at most one Hospital; Each Person was born in at most one City; Each Person was born in at most one Country. In
ORM there is no way to graphically add these uniqueness constraints to Figure 2(a), unless we first derive
the fact types in Figure 2(b), and assert the uniqueness constraints on those derived fact types. Although the
constraints could be added to model (a) as textual constraints in FORML, many ORM modelers would
prefer model (b), as it captures all the constraints visually and has a more efficient relational mapping.

In ORM, the three “was born in” predicates in Figure 2(b) are considered to be distinct. In OWL,
however, we may treat these as the same predicate by assigning them the same Internationalized Resource
Identifier (IRI). If we do this, and no other occurrences of “was born in” exist in the model, then in OWL
we could define the range of the wasBornIn predicate to be Hospital or City or Country (the union of the three).

In OWL, we could even allow the range of the wasBornin predicate to be owl:Thing, as shown in
Figure 3. Here we have made it mandatory to know some birthplace for people but we have made it
optional to know this for animals. Again, OWL allows us to treat both occurrences of wasBornin as the
same predicate. Regardless of which of Figure 2(a), Figure 2(b), or Figure 3 we use for the model, we may
declare Person’s mandatory birthplace constraint in OWL by declaring Person to be a subclass of those
things that play the subject role of the wasBornIn predicate with a minCardinality of 1 (or more). Table 1
shows how to declare this in Manchester Syntax and Turtle Syntax, choosing a minimum cardinality of 1.

Person minCardinality = 1 (or more)

was born in
owl:Thing

Animal
was born in

Figure 3 Restricting Person to be a subclass of things that were born somewhere

Table 1 Restricting Person to be a subclass of the domain of wasBornin where minCardinality = 1

Manchester Syntax Turtle Syntax
Class: Person :Person rdfs:subClassOf
SubClassOf: wasBornin min 1 [] a owl:Restriction;

owl:onProperty :wasBornlin;
owl:minCardinality 1.

For a given predicate R, with domain A and range B, maxCardinality is the maximum number of
instances of B to which that each population instance of the subject class A relates via R (cf. maxMutiplicity
in UML). For example, to declare a uniqueness constraint on the first role of R for a given subject class,
assign a maximum cardinality of 1. As a shortcut, if minCardinality = maxCardinality, you can set both at
once using exactCardinality. For example, Table 2 shows the Manchester Syntax and Turtle syntax for
declaring that each person was born in at most one thing, and that each person was born in exactly one
thing. As discussed in the next section, maximum and minimum cardinality restrictions are typically
qualified with respect to a specified range.

Table 2 Examples of unqualified maxCardinality and exactCardinality restrictions

Manchester Syntax

Class: Person
SubClassOf: wasBornin max 1

Turtle Syntax

:Person rdfs:subClassOf
[] a owl:Restriction;
owl:onProperty :wasBornln;
owl:maxCardinality 1.
:Person rdfs:subClassOf
[] a owl:Restriction;
owl:onProperty :wasBornln;
owl:Cardinality 1.

Class: Person
SubClassOf: wasBornln exactly 1

Qualified Cardinality Restrictions in OWL 2

Qualified Cardinality Restrictions also restrict the range (B) of the predicate R, for the subject class
expression A being constrained. In Manchester syntax, we include the specific range after the relevant min
n, max n or exactly n cardinality specification. In Turtle, we use the owl:onClass predicate to declare the
range restriction after the owl:minQualifiedCardinality n, owl:maxQualifiedCardinality n, or
owl:QualifiedCardinality n specification. For example, Table 2 shows the Manchester Syntax and Turtle
syntax for declaring that each person was born in at least one country, each person was born in at most one
country, and each person was born in exactly one country.

OWL DL and OWL Full (but not OWL Lite) allow restrictions with a minCardinality or
minQualifiedCardinality of n > 1. In ORM this is equivalent to adding the frequency constraint “> n” to the
mandatory role constraint. A frequency constraint of “>n” (or “< n”) on a role means that, for each state of
the information model, each instance that populates that role must appear at least n (or at most n) times in
that role population. Figure 4 illustrates these equivalences for minimum/maximum qualified cardinalities.

Table 3 Examples of qualified minCardinality, maxCardinality, and exactCardinality restrictions

Manchester Syntax

Turtle Syntax

Class: Person
SubClassOf: wasBornln min 1 Country

:Person rdfs:subClassOf

[] a owl:Restriction;
owl:onProperty :wasBornln;
owl:minQualifiedCardinality 1;
owl:onClass :Country.

Class: Person
SubClassOf: wasBornIn max 1 Country

:Person rdfs:subClassOf

[] a owl:Restriction;
owl:onProperty :wasBornln;
owl:maxQualifiedCardinality 1;
owl:onClass :Country.

Class: Person
SubClassOf: wasBornIn exactly 1 Country

:Person rdfs:subClassOf

[] a owl:Restriction;
owl:onProperty :wasBornln;
owl:qualifiedCardinality 1;
owl:onClass :Country.

ORM binary fact type RDF relationship type
= 7] (2]
s R

ORM constraint OWL restriction on R for class A,
with range restricted to B

minQualifiedCardinality = n (where n > 1)

8
»[]3
|

maxQualifiedCardinality = n (where n > 1)

8
»[]4
|

Figure 4 Equivalent ORM for setting an OWL minQualifiedCardinality restriction = n when n> 1.

For example, Figure 5(a) shows an ORM model for the m:n fact type Translator speaks Language. The
mandatory role constraint and frequency constraint on the role played by Translator combine to verbalize as
follows: Each Translator speaks at least 2 instances of Language. In other words, each translator speaks at least two
languages. The UML class diagram in Figure 5(b) captures this by the “2..*” multiplicity constraint on the
association role played by Language. Figure 5(c) shows another ORM example where the maximum
number of wives depends on the subject’s religion (the OWL restrictions are also included on the diagram).
Table 4 shows how to declare these qualified cardinality restrictions in Manchester and Turtle syntax.

(a) (b)

ORM: UML:
speaks speaker languageSpoken

=2

(©

has wife

Christian
Man

Figure 5 Examples of minimum and maximum qualified cardinalities above 1.

Table 4 More examples of minimum and maximum qualified cardinality restrictions

Manchester Syntax Turtle Syntax
Class: Translator :Translator rdfs:subClassOf
SubClassOf: speaks min 2 Language [] a owl:Restriction;

owl:onProperty :speaks;
owl:minQualifiedCardinality 2;
owl:onClass :Language.
Class: ChristianMan : ChristianMan rdfs:subClassOf
SubClassOf: hasWife max 1 Woman [] a owl:Restriction;
owl:onProperty :hasWife;
owl:maxQualifiedCardinality 1;
owl:onClass :Woman.
Class: MoslemMan : MoslemMan rdfs:subClassOf
SubClassOf: hasWife max 4 Woman [1 a owl:Restriction;
owl:onProperty :hasWife;
owl:maxQualifiedCardinality 4;
owl:onClass :Woman.

CompanyCar

drives %2

Employee

®

(Executive J (NonExecutive J

Figure 6 A restricted mandatory role constraint (footnote 1) and a restricted uniqueness constraint (footnote 2).

! Each Executive drives some CompanyCar.
2 Each NonExecutive drives at most one CompanyCar.

FunctionalProperty and InverseFunctionalProperty declarations are global constraints (as are
inverseOf and ring constraints (see later article)), applying to the predicate in all its occurrences (for all its
classes). In contrast, OWL cardinality constraints apply only locally to the specific domain and range
currently under consideration. For example, consider the ORM schema in Figure 6. In the fact type Employee
drives Car, the drives predicate is optional and m:n. However, the two textual constraints in FORML [1, p.
291] add a restricted mandatory role constraint (shown as constraint footnote 1) and a restricted uniqueness
constraint (shown as constraint footnote 2).

Here the drives predicate is functional only with respect to NonExecutive, not Employee. For this
case, we should not declare drives as a FunctionalProperty, because that would then apply to all employees
(and any other subjects of the drives predicate in an OWL version of the model). Both of these restricted
constraints should be declared in OWL using qualified cardinality restrictions. Table 5 shows how to do
this using Manchester Syntax and Turtle syntax.

Table 5 OWL declarations for the restricted mandatory and restricted uniqueness constraints in Figure 6

Manchester Syntax

Turtle Syntax

Class: Executive
SubClassOf: drives min 1 CompanyCar

:Executive rdfs:subClassOf
[] a owl:Restriction;

owl:onProperty :drives;
owl:minQualifiedCardinality 1;
owl:onClass :CompanyCar.
:NonExecutive rdfs:subClassOf
[] a owl:Restriction;

owl:onProperty :drives;
owl:maxQualifiedCardinality 1;
owl:onClass :CompanyCar.

Class: NonExecutive
SubClassOf: drives max 1 CompanyCar

In practice, it is very rare to encounter explicit declarations for minCardinality 0 and
minQualifiedCardinality = 0 because these apply by default, so may be ignored. However, setting the
maximum cardinality to zero does have some use. The setting maxCardinality = 0 means that each instance
of the subject class expression A is related via the predicate R to no object instance. The setting
maxQualifiedCardinality = 0 means that each instance of the subject class expression A is related via R to
no instance of the specified range B. These restrictions are used mainly in defining subclasses, and the
qualified version is typically used in such cases. Figure 7(a) and Figure 7(a) summarize the corresponding
ORM patterns, while Figure 7(c) provides a concrete example.

maxQualifiedCardinality = 0
(used in defining C)

maxCardinality = 0
(used in defining C)

*Each CR’s nothing *Each CRS no B

drives

*Each NonDriver is a Person
who drives no Car.

NonDriver*

Figure 7 Using zero-valued maxCardinality and maxQualifiedCardinality restrictions to define subtypes

Table 6 shows how to express the NonDriver example in Manchester Syntax. We’ll see how to do it in
Turtle syntax in the next article after we have discussed intersections. We will also see some alternative
ways to formulate some of the Manchester Syntax expressions.

Table 6 Using a maxQualifiedCardinality = O restriction to define NonDriver

Manchester Syntax Turtle Syntax
Class: NonDriver Complex — see later after we've covered
EquivalentTo: Person and class intersections
drives max 0 Car

Note that individuals may also be declared to be members of class expressions that are defined using
cardinality restrictions. For example, the population of the derived fact type in Figure 8 reveals some facts
about two of my favorite authors. Isaac Asimov wrote 506 books, while J. R. R. Tolkien wrote 23 books. If
the population of the fact type Person authored Book is complete with respect to authors of interest, the
derivation rule in Figure 8 may be used to derive the number of books written for each author. Regardless,
we can still assert these facts directly in OWL using the Manchester and Turtle syntax shown in Table 7

authored [bookAuthored]

Asimov | 506 | [nrBooksWritten]
Tolkien | 23

*For each Person,
nrBooksWritten = count(bookAuthored).

Figure 8 Two ORM fact types involving inverse functional predicates

Table 7 Declaring individuals as instances of class restrictions

Manchester Syntax Turtle Syntax
Individual: Asimov :Asimov a [a owl:Restriction;
Types: Person, owl:onProperty :authored;
authored exactly 506 Book owl:qualifiedCardinality 506;
Individual: Tolkien owl:onClass :Book].
Types: Person, :Tolkien a [a owl:Restriction;
authored exactly 23 Book owl:onProperty :authored;
owl:qualifiedCardinality 23;
owl:onClass :Book].

Conclusion

The current article provided a detailed coverage of cardinality restrictions (unqualified and qualified) in
OWL 2. The ability in OWL to reuse the same predicate with different subject and object classes/types
allows considerable flexibility for defining classes in terms of predicate restrictions for specific domains
and ranges. The next article will explore other features of OWL, such as ring constraints and class-forming
operations on classes (e.g. union, intersection, complement).

References

1.

2.

10.

Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, 2™ edition, Morgan
Kaufmann, San Francisco.

Halpin, T. 2009, ‘Ontological Modeling: Part 1’, Business Rules Journal, VVol. 10, No. 9 (Sep. 2009),
URL: http://www.BRCommunity.com/a2009/b496.html.

Halpin, T. 2009, ‘Ontological Modeling: Part 2’, Business Rules Journal, VVol. 10, No. 12 (Dec. 2009),
URL: http://www.BRCommunity.com/a2009/b513.html.

Halpin, T. 2010, ‘Ontological Modeling: Part 3’, Business Rules Journal, Vol. 11, No. 3 (March 2010),
URL.: http://www.BRCommunity.com/a2010/b527.html.

Halpin, T. 2010, ‘Ontological Modeling: Part 4’, Business Rules Journal, Vol. 11, No. 6 (June 2010),
URL.: http://www.BRCommunity.com/a2010/b539.html.

Halpin, T. 2010, ‘Ontological Modeling: Part 5°, Business Rules Journal, Vol. 11, No. 12 (Dec. 2010),
URL: http://www.BRCommunity.com/a2010/b570.html.

W3C 2009, ‘OWL 2 Web Ontology Language: Primer’, URL.: http://www.w3.0rg/TR/owl2-primer/.
W3C 2009, ‘OWL 2 Web Ontology Language: Direct Semantics’, URL.: http://www.w3.org/TR/owl2-
direct-semantics/.

W3C 2009, ‘OWL 2 Web Ontology Language Manchester Syntax’, URL:
http://ww.w3.0rg/TR/owl2-manchester-syntax/.

W3C 2009, ‘OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax’,
URL.: http://www.w3.0rg/TR/owl2-syntax/.

