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This is the eighth in a series of articles on ontology-based approaches to modeling. The main focus is on 
popular ontology languages proposed for the Semantic Web, such as the Resource Description Framework 
(RDF), RDF Schema (RDFS), and the Web Ontology Language (OWL). OWL is based on description 
logic. A later series of articles will explore other logic-based languages such as datalog. The first article [2] 
introduced ontologies and the Semantic Web, and covered basic concepts in the Resource Description 
Framework (RDF), contrasting them with other data modeling approaches. The second article [3] discussed 
the N3 notation for RDF, and covered the basics of RDF Schema. The third article [4] provided further 
coverage of RDFS, and introduced different flavors of the Web Ontology language (OWL). The fourth 
article [5] discussed basic features of OWL, mainly using Manchester syntax. The fifth article [6] discussed 
OWL taxonomy, comparison operators for classes, data types and predicates, and examined inverses, 
functional roles and keys in more depth. The sixth article [7] covered cardinality restrictions in OWL 2. 
The seventh article [8] discussed the union, intersection, and complement operators in OWL 2. The current 
article explores support for ring constraints within OWL 2. 
 
 
Ring Constraints 
 
Recall that in OWL, all relationships are binary, so facts are expressed as subject-predicate-object 
sentences. The set of instances from which the subjects are drawn is the domain of the predicate, and the set 
of instances from which the objects are drawn is the range of the predicate. In OWL, binary predicates are 
called properties. Object properties relate entities to entities (e.g. :Einstein :wasBornIn :Germany), while 
data properties relate entities to literals (e.g. :Einstein :hasGivenName “Albert”). If the domain and range 
are the same or at least compatible (overlapping), it is meaningful to compare subject and object instances 
(e.g. may they be identical?). In Object-Role Modeling (ORM), such predicates are called ring predicates 
(picture a ring formed by navigating from an object type though the predicate and circling back to the 
object type), and constraints that apply specifically to these kinds of predicates (or more generally, pairs of 
compatible roles) are called ring constraints [1].  

ORM includes graphical notation for several kinds of ring constraint, some of which are simply 
defined (e.g. irreflexive, asymmetric, antisymmetric, intransitive) while others are recursively defined (e.g. 
acyclic, strongly intransitive). OWL 2 supports only the following five kinds of ring constraint: reflexive, 
irreflexive, symmetric, asymmetric, and transitive. Of these, OWL 1 supported only symmetric and 
transitive. Unlike ORM, OWL allows ring constraints to be applied only to object property expressions.  
 
Reflexive Predicates 
 
In mathematics, a relation R on a set A is said to be reflexive over its domain if and only if xRx for each 
element x in A. For example, the relation ≤ on the set of real numbers is reflexive, since every real number 
is less than or equal to itself, and the subsethood relation  is reflexive, since every set is a subset of itself. 
A relation R is globally reflexive if and only if every individual thing in the domain of discourse bears the 
relation R to itself (i.e., R is globally reflexive if and only if x xRx). For example, in a world that includes 
numbers and sets, the identity relation = is globally reflexive (since everything equals itself), but ≤ and  
are not globally reflexive because ≤ does not apply to sets and  does not apply to numbers. 

OWL allows object property expressions to be declared globally reflexive by characterizing them as 
reflexive properties [12, p. 10]. For example, if we restrict the domain of individuals (owl:Thing) to 
persons, and we agree that each person knows himself/herself, then the “knows” predicate may be declared 
to be reflexive as shown in Table 1. In Manchester syntax, declare “Reflexive” as a characteristic of the 
object property. In Turtle syntax, declare the object property as an instance of owl:ReflexiveProperty. 
 



2 

Table 1 Declaring knows to be globally reflexive 

Manchester Syntax Turtle Syntax 

ObjectProperty: knows 
Characteristics: Reflexive  

:knows  rdf:type  owl:ReflexiveProperty. 

 
 In OWL, if a predicate is known to be reflexive, then any instance in its domain may be inferred to 
bear the relationship to itself [14, p. 86]. For example, given the above declarations and the following 
declarations (Manchester syntax on the left, Turtle syntax on the right) 
 

 Individual: Einstein     :Einstein  rdf:type  :Person. 
  Types: Person  

 
we may infer 
 

 Individual: Einstein     :Einstein  :knows  :Einstein. 
  Facts: knows Einstein     

 
 Care is required in using this reflexive property construct, because it implies global reflexivity. For 
example, if our universe of discourse included not just people but other classes of things (e.g. cars), then 
the predicate “knows” is not reflexive in this global sense (e.g. a car does not know itself). In many object 
domains, the only predicate likely to be globally reflexive is the identity relation “=”. 
 For such reasons, ORM defines reflexivity in the following local sense. A ring predicate R is locally 
reflexive if and only if xy(xRy  xRx). In other words, if any individual bears the relation to something, 
then it must also bear the relation to itself. Hence in ORM you may declare the predicate “knows” to be 
locally reflexive even when the universe of discourse includes objects like cars where the predicate does 
not apply at all. 
 While OWL does not directly support local reflexivity in this sense, it does include an ObjectHasSelf 
restriction to declare a subset of a predicate’s domain where each individual in that subset bears the relation 
to itself. For example, suppose we declare the predicate “likes” between people. Some but not all people 
like themselves, so “likes” is not reflexive. However, we may define SelfLiker as a subclass of Person, 
where each person in SelfLiker does like himself/herself. The relevant Manchester and Turtle syntax for 
this is shown in Table 2. As you can see, the Manchester syntax is much simpler.  

 

Table 2 Constraining each member of SelfLiker to like itself 

Manchester Syntax Turtle Syntax 

Class: Person 
ObjectProperty: likes 

Domain: Person 
Range: Person 

Class: SelfLiker 
EquivalentTo: likes Self 

:Person  rdf:type  owl:Class. 
:likes  rdfs:domain  :Person;  

  rdfs:range  :Person. 
:SelfLiker  owl:equivalentClass  [ 

rdf:type  owl:Restriction ; 
owl:onProperty  :likes; 
owl:hasSelf  "true"^^xsd:Boolean. ]. 

 
 
Irreflexive Predicates 
 
A ring predicate R is irreflexive if and only if x ~xRx (i.e. for each individual x, it is not the case that x 
bears the relation R to itself). So nothing may be in an irreflexive relationship with itself. For example, < is 
irreflexive because nothing is less than itself, and the parenthood relation is irreflexive because nothing can 
be a parent of itself. Notice that there is no need to distinguish between global and local senses of 
irreflexivity because if the relation does not apply at all then the negation requirement is satisfied. 

Figure 1(a) shows an ORM diagram of the parenthood fact type, together with a satisfying, sample 
population. For simplicity, we assume in this model that persons may be identified by their first given 
name. The spanning uniqueness constraint bar indicates that the predicate is many-to-many. The frequency 
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(a) (b)
Person

(.firstname)

2

is a parent of / is a child of

Ann Bill
Colin Bill
Ann David
... ...

firstname {P}
...

Person

child

0..2

*

parent

irreflexive

constraint of “≤ 2” on the child role indicates that a person has at most two parents. The irreflexive nature 
of the ring predicate is depicted by a ring icon connected by a dotted line to the predicate, with a dot for an 
object and a stroke through the ring to indicate that the object cannot bear the connected relationship to 
itself. For example, Ann cannot be a parent of Ann. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1 Depicting parenthood as an irreflexive predicate in (a) ORM, and (b) UML.  

 
 Figure 1(b) models the same example as a Unified Modeling Language (UML) class diagram [9], 
omitting the sample population. The ring association line includes elbows to enable the class to be 
connected at both ends, and has the relevant association role name at each end. The multiplicity constraints 
of “0..2” and “*” indicate that each person has at most two parents and each person has zero or more 
children. The “{P}” constraint is a non-standard notation to indicate that firstname provides the preferred 
identifier for persons. UML has no graphic notation for ring constraints, but the attached note indicates 
informally that the association is irreflexive. If desired, the irreflexive constraint could be formally 
specified as a formula in the Object Constraint Language (OCL) [10].  

In OWL, the parenthood predicate may be declared to be irreflexive as shown in Table 3. In 
Manchester syntax, declare “Irreflexive” as a characteristic of the object property. In Turtle syntax, declare 
the object property as an instance of owl:IrreflexiveProperty. 

 

Table 3 Constraining isParentOf to be irreflexive 

Manchester Syntax Turtle Syntax 

Class: Person 
ObjectProperty: isParentOf 

Domain: Person 
Range: Person 
Characteristics: Irreflexive  

:Person  rdf:type  owl:Class. 
:isParentOf  rdfs:domain  :Person; 

            rdfs:range  :Person. 
:isParentOf  rdf:type  owl:IrreflexiveProperty. 

 
The main point of declaring a predicate to be irreflexive to is to help prevent bad data being asserted to 

it. For example, once the above irreflexive constraint has been declared, any attempt to add a fact that 
somebody is his/her own parent (e.g. :Ann  :isParentOf  :Ann) will be rejected. 
 
 
Symmetric Predicates 
 
A ring predicate R is symmetric if and only if xy(xRy  yRx); that is, for each individual x and y (not 
necessarily distinct), if xRy then it is also the case that yRx. In other words, if the relationship applies then 
its converse also applies. For example, the siblinghood relation is symmetric because if one person is a 
sibling (brother or sister) of another, then the second person is a sibling of the first.  

Figure 2(a) shows an ORM diagram of the siblinghood fact type, together with a satisfying, sample 
population. The symmetric nature of the ring predicate is depicted by a ring icon connected by a dotted line 
to the predicate, with dots for the objects, and the top arc representing the left-to-right relationship and the 
bottom arc representing the right-to-left relationship. For example, if Linda is a sibling of Paul then Paul is 
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(a) (b)
Person

(.firstname)

is a sibling of

Linda Paul
Linda Selena
Paul Linda
Selena Linda

firstname {P}
...

Person

sibling1 *

sibling2

symmetric

*

(c)

symmetric,
irreflexive

a sibling of Linda. Figure 2(b) shows the same example in UML, without the sample data. Here the 
symmetric constraint is captured informally in a note, but it could also be captured formally in OCL. 
Siblinghood is both symmetric and irreflexive (nothing is a sibling of itself). Figure 2(c) shows the 
combined constraint icon for this in ORM, as well as a composite note in UML. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2	 Depicting siblinghood as a symmetric predicate in (a) ORM and (b) UML, and (c) combining constraints.  

 
The siblinghood predicate may be declared to be symmetric in OWL as shown in Table 4. In 

Manchester syntax, declare “Symmetric” as a characteristic of the object property. In Turtle syntax, declare 
the object property as an instance of owl:SymmetricProperty. For completeness, the irreflexive nature of 
the predicate is also declared. 

 

Table 4 Constraining isSiblingOf to be symmetric (and irreflexive) 

Manchester Syntax Turtle Syntax 

Class: Person 
ObjectProperty: isSiblingOf 

Domain: Person 
Range: Person 
Characteristics: Symmetric, Irreflexive  

:Person  rdf:type  owl:Class. 
:isSiblingOf  rdfs:domain  :Person; 

             rdfs:range  :Person. 
:isSiblingOf  rdf:type  owl:SymmetricProperty, 
                                     owl:IrreflexiveProperty. 

 
 In OWL, if a predicate is declared to be symmetric, and we assert a fact instance of it, then its 
converse may be inferred. For example, given the above declarations and the following declarations 
(Manchester syntax on the left, Turtle syntax on the right) 
 

 Individual: Romulus     :Romulus  :isSiblingOf  :Remus. 
  Facts: isSiblingOf Remus   

 
we may infer 
 

 Individual: Remus      :Remus  :isSiblingOf  :Romulus. 
  Facts: isSiblingOf Romulus   

 
 There is a subtle difference between symmetric constraints in ORM and OWL. In ORM, constraining 
a predicate to be symmetric means that the asserted fact population must be symmetric. For example, if we 
assert that Romulus is a sibling of Remus then we must also assert that Remus is a sibling of Romulus 
(both facts are stored). In OWL however, you can assert just one of these facts and have the other fact 
inferred. To do that in ORM, you would provide a derivation rule for inferring the converse rather than 
constraining the fact type to be symmetric.  

For example, in ORM you could declare the fact type Person is a sibling of Person to be semiderived, 
meaning that some of its instances may be asserted and some may be derived, and use the following rule to 
derive the converse facts: Person1 is a sibling of Person2 if Person2 is a sibling of Person1. In this case, you would 
constrain the siblinghood fact type to be irreflexive, but not symmetric. 
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Asymmetric Predicates 
 
A ring predicate R is asymmetric if and only if, for each individual x and y (not necessarily distinct), if xRy 
then it is not the case that yRx. In other words, if the relationship applies then its converse cannot apply. For 
example, the parenthood relation is asymmetric because if one person is a parent of another, then the 
second person cannot be a parent of the first.  

Figure 3(a) shows an ORM diagram of the parenthood fact type, together with a satisfying, sample 
population. The asymmetric nature of the ring predicate is depicted by a ring icon connected by a dotted 
line to the predicate, with dots for the objects, and a stroke through the bottom arc. For example, if Ann is a 
parent of Bill then Bill cannot be a parent of Ann. Figure 3(b) shows the same example in UML, without 
the sample data. Here the asymmetric constraint is captured informally in a note, but it could also be 
captured formally in OCL. 
 Note that if a predicate is asymmetric, it is automatically irreflexive as well (consider the definition of 
asymmetry for the case where x = y). Hence there is no need to add an irreflexive constraint to the models 
in Figure 3 because it is implied by the asymmetric constraint. Although asymmetry implies irreflexivity, 
the converse does not apply. For example, isSiblingOf is irreflexive but not asymmetric. 

 
 
 
 
 
 
 
 
 
 
 

Figure 3 Depicting parenthood as an asymmetric predicate in (a) ORM, and (b) UML.  

The parenthood predicate may be declared to be asymmetric in OWL as shown in Table 5. In 
Manchester syntax, declare “Asymmetric” as a characteristic of the object property. In Turtle syntax, 
declare the object property as an instance of owl:AsymmetricProperty. 

 

Table 5 Constraining isParentOf to be asymmetric 

Manchester Syntax Turtle Syntax 

Class: Person 
ObjectProperty: isParentOf 

Domain: Person 
Range: Person 
Characteristics: Asymmetric  

:Person  rdf:type  owl:Class. 
:isParentOf  rdfs:domain  :Person; 

            rdfs:range  :Person. 
:isParentOf  rdf:type  owl:AsymmetricProperty. 

 
The main point of declaring a predicate to be asymmetric is to help prevent bad data being asserted to 

it. For example, once the above asymmetric constraint has been declared and we assert that Ann is a parent 
of Bill, then any attempt to add the fact that Bill is a parent of Ann will be rejected. 
 
 
Transitive Predicates 
 
A ring predicate R is transitive if and only if, for each individual x, y, and z (not necessarily distinct), if xRy 
and yRz then then it is also the case that xRz. For example, the ancestorhood relation is transitive because if 
one person is an ancestor of another, and the second person is an ancestor of a third person, then the first 
person is an ancestor of the third person. Figure 4(a) shows an ORM diagram of the ancestorhood fact type, 
together with a sample population. Figure 4(b) shows the same example in UML, without the sample data.  
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Figure 4  Depicting an asserted ancestorhood predicate that is acyclic and transitive in (a) ORM, and (b) UML.  

 
Ignoring reincarnation, the ancestorhood predicate is actually acyclic (an object can never cycle back 

to itself by applying one or more ancestorhood facts). Ancestorhood is also asymmetric, but this is implied 
by acyclicity so there is no need to add that. ORM depicts the acyclic constraint graphically by a ring with 
three dots and a stroke, and the transitivity constraint by a triangle with dots at each node. These two 
constraint shapes are orthogonally combined by overlaying into a single icon as shown. UML has no 
graphical notation for these constraints, so an informal note for them is used in the UML class diagram. 

In this model, ancestorhood facts are simply asserted. If instead, ancestorhood facts are always 
derivable from parenthood facts, then ORM can express this formally by declaring the ancestorhood fact 
type to be derived from this recursive derivation rule: Person1 is an ancestor of Person2 if and only if Person1 is a 
parent of Person2 or Person1 is an ancestor of some Person3 who is a parent of Person2. Transitivity is now implied by the 
derivation rule. One reason for deriving transitive predicates rather than asserting them is that their 
population (or “transitive closure”) can quickly become very large. For example, asserting the top three 
facts in the sample data for Figure 4(a) requires the following four facts shown to be included. As the 
number of asserted facts increases, the number of facts that are transitively implied increases dramatically. 

Although OWL does not support acyclicity constraints, it does allow ring predicates to be declared to 
be transitive. In OWL the ancestorhood predicate may be declared to be transitive as shown in Table 6. In 
Manchester syntax, declare “Transitive” as a characteristic of the object property. In Turtle syntax, declare 
the object property as an instance of owl:TransitiveProperty. For completeness, the asymmetric constraint 
is also declared. 

 

Table 6 Constraining isAncestorOf to be transitive (and asymmetric) 

Manchester Syntax Turtle Syntax 

Class: Person 
ObjectProperty: isAncestorOf 

Domain: Person 
Range: Person 
Characteristics: Transitive, Asymmetric 

:Person  rdf:type  owl:Class. 
:isAncestorOf  rdfs:domain  :Person; 

                rdfs:range  :Person. 
:isAncestorOf  rdf:type  owl:TransitiveProperty, 
                                        owl:AsymmetricProperty. 

 
 
 In OWL, declaring the isAncestorOf predicate to be transitive does not require that all its instances 
must be asserted. For example, if you declare the predicate to be transitive, and assert that Ann is an 
ancestor of Bill and that Bill is an ancestor of Chris, then the OWL engine can infer that Ann is an ancestor 
of Chris. You can also arrange things this way in ORM by declaring the ancestorhood fact type to be 
semiderived, and supplying the following derivation rule: Person1 is an ancestor of Person2 if Person1 is an ancestor 
of some Person3 who is an ancestor of Person2. However, if parenthood facts are available to derive ancestry, then 
the earlier derivation rule discussed is clearly preferable. 
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Conclusion 
 
The current article briefly discussed the notion of ring constraints on predicates, and then provided a 
detailed coverage of the five ring constraints that are supported in OWL 2 (reflexive, irreflexive, 
symmetric, asymmetric, and transitive). The next article will discuss enumerated types and value 
restrictions on properties in OWL 2. 
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