
Subtyping: conceptual and logical issues
by Dr. Terry Halpin, BSc, DipEd, BA, MLitStud, PhD
Director of Database Strategy, Visio Corporation

This paper first appeared in vol. 23, no. 6 of Database Newsletter and is reproduced by permission.

Subtyping is an important feature of semantic approaches to conceptual schema design
and, more recently, object-oriented database design. However the relational model does
not directly support subtyping, and CASE tools for mapping conceptual to relational
schemas typically provide only very weak support for mapping subtypes. This paper
surveys some of the main issues related to conceptual specification and relational
mapping of subtypes, and indicates how Object-Role Modeling solves the associated
problems.

Introduction

To enhance communication between modeler and domain expert, and to facilitate later
changes in the application and/or the implementation DBMS, an information system
should be specified at the conceptual level before it is mapped to some logical data model.
At the conceptual level, information is expressed as elementary facts together with various
business rules (constraints and derivation rules) which restrict allowable states and
transitions on the database. How these facts and rules are grouped into structures
depends on the target logical model (e.g. relational, network, hierarchic, object-oriented)
and hence is not fundamentally a conceptual issue.

Like relational schemas, so-called “object-oriented” (OO) schemas provide little direct
support for declarative business rules, although they do provide some rudimentary
support for subtyping. It is well known that some classic OO approaches deriving from
OO-programming are crippled, by failing to allow migration between subtypes (e.g. a
contract employee is promoted to permanent employee) and failing to allow multiple
inheritance (e.g. a student tutor is both an employee and a student).

In his NTH (the Newsletter on Type Hierarchies) framework, Ross [4-6] sets out
several criteria for a truly declarative approach to subtyping. These criteria are
fundamentally in agreement with semantic approaches to conceptual modeling such as
Object-Role Modeling (ORM) and the more elegant versions of Enhanced Entity-Relationship
(EER) Modeling. Both ORM and EER are at heart data modeling methods, that focus on
static constraints and rules (these apply to each individual database state that occurs in the
rule’s lifetime). In the area of dynamic constraints, Ross provides some extensions (see his
rules for subtype migration and initialization [6]).

By applying abstraction techniques to identify major object types on which operations
may be defined [1], it is possible to extend ORM and EER to provide object-oriented views

Subtyping: conceptual and logical issues 2

which encapsulate operations (often misnamed “methods”) with the data. However in this
article we focus on the data perspective of subtyping, with the emphasis on conceptual
specification and later mapping to the relational level. In particular, we address the
following questions within the context of data modeling:

• Why subtype at all?

• How should subtypes be displayed?

• When should subtypes be used?

• What subtype constraints should be declared?

• How should subtypes map to a relational DBMS?

These questions are discussed briefly and rather informally. A detailed discussion of
many of the issues may be found in [1, 2] while a formal treatment is presented in [3].

Why subtype at all?

Three important reasons for using subtypes in information systems modeling are:

1. To assert typing constraints

2. To assert classification schemes (taxonomy)

3. To encourage re-use of model components

Reason (1) is the most important. Here we declare that some information is recorded
only for a specific subtype. For example, votes should be recorded only for permanent
residents. Subtypes may also be used to classify an object type according to some criteria
of interest. For example, we might classify people according to their sex, and introducing
MalePerson and FemalePerson subtypes is one way of showing this. Thirdly, if a new
subtype is introduced to a model, it automatically inherits the properties of its supertypes,
and hence only its specific roles need to be declared; apart from this reduction in code
duplication, the more generic supertypes are likely to find re-use in other applications.

How should subtypes be displayed?

An object type (e.g. Person or Car) may be thought of as the set of all its possible
populations, and is usually depicted as a named loop. In ORM this loop is either an ellipse
or a frame (rounded corners), whereas in ER it is typically a rectangle or a frame. The
choice of loop shape is not really important. At any time, an object type will be populated
by a set of objects. During the lifetime of an application, the state or population of the type
changes from one set to another (sets themselves are unchanging). Given two object types,
A and B, we say that B is a subtype of A if, for each state of the database, the population of
B must be included in the population of A.

Subtyping: conceptual and logical issues 3

In information systems work, the only subtypes of interest are proper subtypes. We say
that B is a proper subtype of A if (i) B is a subtype of A and (ii) there is a possible state in
which the population of A includes some object that is not in B. For example, Woman is a
proper subtype of Person. We could have a state in which all the people are women, and
another in which there are also some men, but we never have a state in which a woman is
not also a person. From now on, we use “subtype” as short for “proper subtype”.

The two main ways in which subtyping is depicted graphically are:

1. Euler diagrams

2. Directed Acyclic Graphs

Euler diagrams depict relationships between subtypes spatially (unlike Venn diagrams,
with which they are sometimes confused). For example, Figure 1 depicts the following
information: B, C and D are subtypes of A, and E is a subtype of both C and D. Moreover,
B overlaps with C (i.e. they may have a common instance) and C overlaps with D, but B
and D are mutually exclusive (cannot have a common instance). For example: A = Person; B
= Asian; C = Consultant; D = American; E = TexanConsultant.

FIGURE 1 An Euler diagram.

Euler diagrams provide intuitive displays for simple cases but are too cumbersome for
the complex subtype patterns often found in real applications, where an object type might
have a large number of subtypes many of which overlap. Moreover, individual subtypes
may have many specific details recorded for them, and there is simply no room to attach
these details if the subtype nodes are crowded together inside their supertype nodes.

For such reasons, Euler diagrams are eschewed for non-trivial subtyping. Instead
directed acyclic graphs (DAGs) are often used. A directed graph is simply a graph of nodes
with directed connections, and acyclic means there are no cycles (here a consequence of
proper subtyping). The subtype pattern in Figure 1 is represented in DAG form in Figure
2. Here an arrow from one node to another shows that the first is a subtype of the second.
Since subtypehood is transitive, indirect connections are omitted (e.g. since E is a subtype
of C, and C is a subtype of A, it follows that E is a subtype of A, so there is no need to
display this implied connection). Instead of using arrowheads, some notations assume the
direction is always upwards; however this makes it very difficult to layout detailed
schemas.

E

A

B C D

Subtyping: conceptual and logical issues 4

FIGURE 2 A directed acyclic graph.

DAGs are less intuitive than Euler diagrams. For example, in Figure 2, B is shown
“outside” A even though every object instance within B must also be contained in A, and
information about subtype overlapping is lost. This is a consequence of depicting subtype
connections by arrows rather than spatial containment. However this disadvantage is
more than offset by the fact that DAGs may be used to conveniently represent subtype
patterns of arbitrary complexity, while still allowing plenty of space around each node for
details to be attached.

Note that Figure 2 depicts only the subtype connections. Figure 1 contains the
additional information that B overlaps with C, C overlaps with D, and B and D are
mutually exclusive. Hence if DAGs are used, some other means must be used to convey
whether or not subtypes are mutually exclusive. One way of doing this in ORM is to
attach an exclusion symbol “⊗” via dotted lines to the relevant subtype links. The absence
of such a symbol indicates that the populations of the types may overlap. For example,
with this additional symbol, Figure 3 now conveys the exclusion/overlap information in
Figure 1.

Traditionally, Euler diagrams are viewed existentially (i.e. something exists in each
region). From this viewpoint, Figure 1 makes further claims about totality. For example, A
is a proper supertype of the union of B, C and D; and E is a proper subtype of the
intersection of C and D. However Euler diagrams may also be viewed hypothetically (no
existential claims are made). From the hypothetical viewpoint, Figures 1 and 3 are
equivalent. With DAGs, further symbols (e.g. “/”) may be used to indicate totality
constraints. As we see later, a proper treatment of subtyping entails that the relevant
exclusion and totality constraints are typically implied.

A

B C D

E

Subtyping: conceptual and logical issues 5

Figure 3 B and D are mutually exclusive.

When should subtypes be used?

Some modelers like to use subtypes purely for taxonomic reasons. For example, suppose
we wish to classify employees according to their marital status. We might set this out
using subtypes as shown in Figure 4. Here the exclusion “−” and totality “/” symbols are
superimposed to indicate that both apply. In other words we have a partition (the subtypes
are exclusive, and their union equals the supertype).

FIGURE 4 A partition.

Here we have four possible marital states. As the number of states grows, subtype
displays consume even more space. Imagine using this method to display employee rank
in a company that has ten or more ranks. Usually, taxonomic information is more
efficiently conveyed via some classifying predicate. For example, the taxonomy in Figure 4
may be displayed in ORM as set out in Figure 5. For the reader unfamiliar with Object-
Role Modeling, some brief points about the method are now given.

ORM is a conceptual modeling method that views the application world simply in
terms of objects that play roles, either individually (e.g. smokes) or within a relationship
(e.g. in Figure 5 the object type Employee plays the role of having, and the object type
MaritalStatus plays the role of being held). Unlike ER, no use is made of attributes, so
there is no need to agonize over whether some feature is to be modeled an attribute or not.

A

B C D

E

Employee

Single
Person

Married
Person

Widowed
Person

Divorced
Person

Subtyping: conceptual and logical issues 6

FIGURE 5 The same partition.

ORM allows facts to be verbalized naturally, and its role-based notation allows fact
types of any length to be populated with instances for validation with the domain expert
as well as facilitating the declaration of many constraints and rules. Since its object types
are conceptual domains, ORM diagrams reveal the semantic glue that binds an application
together. Once an ORM model has been developed, various abstraction mechanisms may
be applied to hide detail as desired. One such mechanism generates an ER view. Because
of its obvious advantages over ER, we use ORM for the rest of our discussion. However
the reader should have little trouble in relating the discussion to ER as well. Perhaps the
most well known version of ORM is NIAM, which was developed in Europe in the early
70s. The version of ORM discussed here is FORM (Formal ORM) which is supported by
the InfoModeler CASE tool from Asymetrix. A detailed treatment of ORM is found in [1].

In Figure 5 the named ellipses depict object types, with their reference schemes
abbreviated in parenthesis. Employees are identified by their employee number (emp#),
while each marital status is identified by a code: the possible codes (e.g. ‘S’) are listed in
braces. Such a list is called a value constraint, since it indicates which values may be used to
reference objects of that type.

If we also want to record full names (e.g. ‘Single’) for marital status this may be added
as a 1:1 fact type (e.g. MaritalStatus has MaritalStatusName). Notice how the approach
facilitates schema evolution. Here we simply added a fact type; if in ER we had modeled
marital code as an attribute of employee, and then later decided to store the
corresponding names, a more drastic change is required.

In ORM, each role is shown as a box attached to the object type that plays it. A logical
predicate is depicted as a named sequence of one or more contiguous roles, with the name
written in or beside the first role. If desired, alternative predicate readings may be
provided to allow facts to be read in other directions.

The arrow-tipped bar over the left role in Figure 5 is a uniqueness constraint, which
may be verbalized as: each Employee has at most one MaritalStatus. If the fact type is
populated with instances, entries in the left column will be unique, but not so for the right
column. Read from left-to-right, this is a many:1 fact type. The black dot on Employee is a
mandatory role constraint, indicating that this role must be played by each employee
referenced in the database population. In words, this constraint is: each Employee has
some MaritalStatus. With InfoModeler, facts and constraints may be entered graphically
or textually, with automatic conversion between the two representations.

Let us assume we are using ORM or at least a version of ER that supports value
constraints. Since taxonomies are more compactly depicted with predicates, we argue
against introducing subtypes merely to display a taxonomy (compare Figures 4 and 5).
Just as for other object types, we recommend the following design guideline: don’t
introduce a subtype unless there’s something specific you want to say about it. There are two
main cases in which this might arise:

E m ploye e
(e m p #)

M arita lS ta tu s
(code)

ha s

{'S ','M ','W ','D '}

Subtyping: conceptual and logical issues 7

1. A role is played only by that subtype

2. A constraint or operation is different for that subtype

The first case is by far the most important, and we illustrate it by means of example.
Suppose we are modeling a hospital system for which output reports like the sample
shown in Table 1 are required. Here a “?” denotes a simple null value (value is unknown),
whereas “−” is a special null value (an actual value cannot exist because of some other
entry on this row: this corresponds to Codd’s I-mark).

TABLE 1 A sample report.

Patient
Nr

Name Sex Phone Prostate status Pregnancies Ante-natal visits

101
102

103
104
105

Adams A
Blossom F

Jones E
King P
Smith J

M
F

F
M
M

2052061
3652999

?
?

2057654

OK
−

−
benign enlargement

?

−
5

0
−
−

−
6/20/90
7/15/90
2/15/95

?
−
−

FIGURE 6 An ORM schema for Table 1.

An ORM schema for this report is shown in Figure 6. The broken ellipse for
PatientName indicates this is a value type (in this case a character string) and hence needs
no reference scheme. The solid ellipses denote entity types. The “+” on Quantity indicates
that the values which refer to Quantity are actual numbers and hence may be added etc.
In contrast, patient numbers and phone numbers are not to be used arithmetically.

P atien t
N a m e

P atien t
(n r)

S ex
(co de)

Q u an tity
(n r)+

has

has

is o f

had p reg nancies in

{'M ','F '}

P ro sta te
sta tus (id)

M a n W o m an

each M a n is a P atien t who is o f S ex 'M '
each W o m an is a P atien t who is o f S ex 'F '

P ho ne
(n r)

has

D a te
(m d y)

a tte nded an te -na ta l c lin ic on

Subtyping: conceptual and logical issues 8

Notice how the simple null values are modeled in terms of optional roles. If a role
played by a non-leaf node has no mandatory role dot it is optional. For example, it is
optional whether a patient has a phone. The inapplicable-nulls however are modeled
using subtypes. It is part of the modeler’s job to extract the rules that determine when a
value is applicable here. If the modeler is familiar with the application, a reasonable guess
may be made. But since infinitely many rules satisfy any finite data set, there is in
principle no way of automatically deriving the correct rule with certainty just from the
sample data. Fortunately, the domain expert knows the rule so we need only to check the
rule with this person.

Let us agree that the rules in this case are: prostate status is recorded only for men;
number of pregnancies and dates of ante-natal visits are recorded only for women. This
requires us to introduce subtypes for men and women. In general, if an optional role is
played only by some well-defined subtype we should introduce the subtype and attach its specific
roles. In doing this, we should provide subtype definitions which enable membership in the
subtype to be determined by conditions on roles played by its supertype(s).

Figure 6 includes appropriate subtype definitions in the FORML language used by
InfoModeler. Notice that these definitions are not simply “is a” connections: they also
include the condition that determines membership in that subtype. Most subtype
definitions are fairly simple like this; but in general the schema path and conditions
involved in the definition may be long and complex. For example, consider defining a
subtype for patients who contracted in the 1980s any disease known to have originated
from Africa. An expressive formal language such as FORML is required for such cases.

In our example, the introduction of the subtypes Man and Woman as special cases of
Patient is referred to as specialization. The inverse process whereby a common supertype is
introduced is known as generalization. For example, we might start with just Man and
Woman and then decide to introduce Patient because of their common information (name,
sex, phone number). Although each process arrives at a subtype graph, with specialization
the subtypes usually inherit the identification scheme of their (top) supertype, while with
generalization a new identification scheme is often introduced for the supertype to
provide global reference. For further details on context-dependent reference and related
issues, see [1, 3].

Sometimes a constraint or operation defined for an object type takes a more specific
form for some well-defined cases. In this case, subtypes might be introduced merely to
facilitate declaration of the more specific versions of the constraints or operations.
Ignoring non-monotonic approaches to default reasoning, we should ensure that the
specialized rules (on the subtypes) are merely stronger versions of the general rules (on the
supertype(s)). This implies that the rules should be consistent.

Consider the schema fragment in Figure 7. In general, employees have use of zero or
more company cars. Recent employees have use of at most one company car. Managers
have use of at least one and possibly two company cars (the “1-2” is a frequency
constraint). Let us define a RecentManager to mean a manager who is a recent employee
(excluding newly appointed managers who are a long-time employees). In this case,
RecentManager inherits both the constraints of its direct supertypes, so each recent

Subtyping: conceptual and logical issues 9

manager has use of exactly one company car. Notice how the constraints are simply
strengthened as we move down to more specialized cases. An optional role may become
mandatory, and the frequency of a role may become more constricted, but we may not do
the reverse.

In displaying the more specialized rules, broken lines were used to indicate that the
car-usage predicate was repeated. To simplify layout, an object type (e.g. CompanyCar)
may also be duplicated using double ellipses to indicate repetition. To reduce clutter on a
schema diagram, display of such repeated predicates may be toggled off.

FIGURE 7 Constraint strengthening.

When the data model is augmented by binding operations to some of its object types,
these operations may be specialized as well. When constraints and operations take on
“different shapes” in this way, this is often referred to as “polymorphism”. This term is
sometimes used in a different sense (e.g. [3]).

What subtype constraints should be declared?

Subtype constraints may be static or dynamic. Dynamic constraints specify restrictions on
initialization of and migration between subtypes. An extensive discussion of these is
provided by Ross [5]. Instead of using subtypes, some of these cases may be specified
using a transition table or graph. For example, instead of saying a person cannot migrate
from a married person to a single person, we merely exclude the transition from the
marital status ‘M’ to ‘S’.

Static constraints on subtypes are more fundamental. The only proper way to treat
these is to provide formal subtype definitions. This point is rarely recognized in practice. It is
a common misconception that the declaration is complete once subtype links (is-a
connections) and exclusion and totality constraints are declared. To see that this is
nonsense, consider the populated schema fragment shown in Figure 8 (reference schemes
are omitted for simplicity). The population satisfies all the declared constraints, but there
is still something wrong. Can you spot the problem?

Employee

Recent
Employee

Manager

Recent
Manager

Company
Car

has use of

has use of

has use of

has use of

1-2

Subtyping: conceptual and logical issues 10

FIGURE 8 What is wrong with this?

It wasn’t hard to spot, was it? Prostate status has been recorded for women and
pregnancies for men! The only way to avoid such errors is to declare the subtype
definitions (see Figure 6) and enforce them. Moreover, the partition constraint between the
subtypes is implied by these definitions in conjunction with the constraints on the sex fact
type. Since each person has one of two sexes, the subtyping is exhaustive; and since each
person has only one sex, the subtyping is exclusive. For this reason, display of implied
totality and exclusion constraints may be toggled off as desired to avoid clutter.

How should subtypes map to a relational DBMS?

Subtypes are not directly supported in the relational model, though Codd’s RM/T
proposal provides limited support, and the proposed SQL3 standard includes primitive
support in the form of sub-tables. Fortunately there are ways of mapping subtypes to even
current relational systems. We now sketch the basic ideas, limiting our attention to static
aspects.

There are two basic aspects to the mapping any conceptual schema: grouping fact
types into tables; and mapping the associated business rules (constraints and derivation
rules). Let’s look at the grouping aspect first. Ignoring tuning by controlled
denormalization, let us assume we want a redundancy-free, fully normalized relational
schema. Since all the fact types in a correct ORM schema are elementary, this task is fairly
trivial. Redundancy is nothing other than repetition of an elementary fact, and a relational
table stores one or more elementary fact types. So to avoid redundancy we simply map
each fact type to only one table, in such a way that its instances appear only once. To
achieve this, fact types with compound uniqueness constraints map to separate tables,
while fact types with functional roles (these have a simple uniqueness constraint) attached
to the same object type are grouped into the same table, keyed on the object type’s
identifier. There are a few finer points to the grouping, but this gives the basic idea.

Now let us consider mapping of the fact types played by object types in a subtype
graph. First, determine whether or not the subtypes inherit the primary identification
scheme of their supertypes. If they do, there are three basic ways in which the fact types
may be grouped into relational tables: absorption; separation; partition.

Patient

Man W o m a n

Sex

{'M','F'}

101 M
102 F

is of

Prostate
status

has

OK 102

Quantity

had pregnancies in

101 5

Subtyping: conceptual and logical issues 11

Absorption effectively absorbs the subtypes back into their top supertype before
grouping. This reduces the number of tables and speeds up many queries and updates
which otherwise would have involved a join., but generates nulls and complicates access
to a single subtype. Separation groups functional fact types of each node into a separate
table for that object type. This reduces nulls but requires joins for queries involving
attributes from more than one subtype. The partition option is used only if the subtype
graph forms a partition. In this case, common fact types on the supertype(s) are pushed
down to the leaf subtypes, then a separate table is formed for each of these subtypes.

Combinations of these three approaches may also be used. When the primary
identifier of a subtype is context-dependent rather than inherited, special care is required
to map the subtype links. For further details on these issues, see section 8.4 of [1].

Assuming that a grouping decision for subtype mapping has been made, we now
have the task of mapping the relevant subtype constraints. Fortunately this is relatively
straightforward. We illustrate the basic ideas by mapping the conceptual schema in Figure
6. Using absorption, we obtain the relational schema shown in Figure 9. The functional
fact types are absorbed into a single Patient table, while the many:many fact type about
ante-natal visits is mapped to a separate table. For simplicity, the domains on which the
attributes are based are omitted. Notice how the constraints are mapped. Keys are
underlined, the value constraint on sex codes is displayed next to the relevant attribute,
and optional columns are shown in square brackets. The dotted arrow denotes a subset
constraint (in this case, a foreign key).

The mapping of the subtype constraints is captured in the three numbered
qualifications. Qualification 1 declares that a non-null value for prostate exists only if the
value of sex is ‘M’. Qualification 2 declares that a non-null value for pregnancies exists if
the value of sex is ‘F’ (this captures the mandatory role) and only if the value of sex is ‘F’
(this captures the subtype constraint). Qualification 3 declares that each value in
AnteNatalVisit.patientnr must be a value of Patient.patientnr for which the value of sex is
‘F’: for simplicity we omit the referential action to be taken on violation of this constraint.

FIGURE 9 The relational schema mapped from Figure 6.

Patient (pa tientnr, patientnam e, sex, [phone], [p rostate]1, [pregnancies]2)

An teN ata lV is it (pa tientnr, a ttendanceda te)

{M , F}

3

1 exists only if sex = 'M '
2 exists iff sex = 'F '
3 on ly w here sex = 'F '

Subtyping: conceptual and logical issues 12

The generic notation in Figure 9 may be mapped to the language in the chosen DBMS.
For example, in SQL-92 the first two qualifications map to the following constraints on the
Patient table:

constraint prostate_recorded_only_for_males
 check (prostate is null or sex = ‘M’);

constraint pregnancies_recorded_iff_patient_is_female
 check (pregnancies is null and sex <> ‘F’ or

pregnancies is not null and sex = ‘F’)

Since the subtype constraint underlying qualification 3 is stronger than a subset constraint,
the following assertion is used instead of declaring a foreign key clause:

create assertion each_antenatal_visit_is_by_a_female
 check (not exists (select patientnr from AnteNatalVisit

except
select patientnr from Patient
where sex = ‘F’))

Although included in the SQL92 standard, assertions are not yet supported in all SQL
systems, so it may be necessary to generate alternate code for this constraint (e.g. as a
triggered procedure). Since mapping large and complicated schemas is a lengthy and
error-prone task, it is important to have a CASE tool that automates as much of the
mapping as desired. The next release of InfoModeler should provide a good example of
what is possible in this regard. The interesting and creative task is for the modeler to
arrive at a clear, conceptual model of the application through communication with the
subject matter experts. Although methods like ORM make this task easier, this initial step
from the informal to the formal is one that can’t be automated, so humans will remain
indispensable in the modeling process. Just as well!

References

1. Halpin, T.A. 1995, Conceptual Schema and Relational Database Design, 2nd edn, Prentice Hall,
Sydney, Australia.

2. Halpin, T.A., Harding, J. & Oh, C-H 1992, ‘Automated support for subtyping’, Proc. Third
Workshop on the Next Generation of CASE Tools, eds B. Theodoulidis & A. Sutcliffe, Paris,
France, pp. 151-61.

3. Halpin, T.A. & Proper, H.A. 1995, ‘Subtyping and polymorphism in Object-Role
Modelling’, Data and Knowledge Engineering, North-Holland (to appear).

4. Ross, R.G. 1994, ‘Prescriptions for subtyping in database design’, Data Base Newsletter, vol.
22, no. 5, Database Research Group, Boston MA.

5. Ross, R.G. 1994, ‘Representation schemes for type hierarchies, Data Base Newsletter, vol. 22,
no. 6, Database Research Group, Boston MA.

6. Ross, R.G. 1995, ‘Declarative rules for type hierarchies, Data Base Newsletter, vol. 23, no. 1,
Database Research Group, Boston MA.

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

