

Subtyping Revisited

Terry Halpin

Neumont University

South Jordan, Utah. USA

terry@neumont.edu

Abstract: In information systems modeling, the business domain being mod-

eled often exhibits subtyping aspects that can prove challenging to implement

in either relational databases or object-oriented code. In practice, some of these

aspects are often handled incorrectly. This paper examines a number of subtyp-

ing issues that require special attention (e.g. derivation options, subtype rigidity,

subtype migration), and discusses how to model them conceptually. Because of

its richer semantics, the main graphic notation used is that of Object-Role Mod-

eling (ORM). However, the main ideas could be adapted for UML and ER, so

these are also included in the discussion. A basic implementation of the pro-

posed approach has been prototyped in an open-source ORM tool.

1 Introduction

An information system in the wider sense corresponds to a business domain or un-

iverse of discourse rather than an automated system. As the name suggests, the un-

iverse of discourse is the world, or context of interest, about which we wish to dis-

course or talk. Most business domains involve some subtyping, where all instances of

one type (e.g. Manager) are also instances of a more encompassing type (e.g. Em-

ployee). In this example, Manager is said to be a subtype of Employee (a supertype).

Various information modeling approaches exist for modeling business domains at a

high level, for example Entity-Relationship Modeling (ER) [1], the Unified Modeling

Language (UML) [16, 17, 20], and Object-Role Modeling (ORM) [13]. These model-

ing approaches provide at least basic subtyping support. In industrial practice howev-

er, certain aspects of subtyping are often modeled or implemented incorrectly. This is

sometimes due to a lack of appropriate modeling constructs (e.g. derivations to/from

subtypes, subtype rigidity declarations), or to a lack of an obvious way to implement a

subtyping pattern (e.g. historical subtype migration). This paper proposes solutions to

some of these issues. Because of its richer semantics, the main graphic notation used

is that of ORM 2 (second generation ORM), as implemented in NORMA, an open

source ORM 2 tool. However, the main ideas could be adapted for UML and ER.

Section 2 overviews basic subtyping and its graphical depiction in ORM, UML,

and ER, and identifies the condition under which formal derivation rules are required.

Section 3 proposes three varieties of subtyping (asserted, derived, and semi-derived).

Section 4 distinguishes rigid and role subtypes, relates them to changeability settings

on fact type roles, and discusses related subtyping patterns. Section 5 notes imple-

mentation issues, summarizes the main results, and suggests future research topics.

Patient
(.nr)

Gender
(.code)

has

Male
Patient

Female
Patient

{„M‟, „F‟}

PregnancyCount
(.nr)

has

ProstateStatus
(.description)

has

Patient

nr: Integer {P}
gender: GenderCode

«enumeration»
GenderCode

m
f

gender

MalePatient

prostateStatus [0..1]

FemalePatient

pregnancyCount [1]

{disjoint, complete}

(a)

(b) (c)
PATIENT

* patient nr
 * gender

MALE PATIENT
 o prostate status

FEMALE PATIENT
 * pregnancy count

{0 ..}

2 Basic Subtyping and the Need for Derivation Rules

Fig. 1(a) shows a simple case of subtyping in ORM 2 notation. Patients are identified

by their patient numbers and have their gender recorded. Patient is specialized into

MalePatient and FemalePatient. Pregnancy counts are recorded for, and only for, fe-

male patients. Prostate status is recorded only for male patients. In ORM 2, object

types (e.g. Patient) are depicted as named, soft rectangles. A logical predicate is de-

picted as a named sequence of role boxes, each connected by a line to the object type

whose instances may play that role. The combination of a predicate and its object

types is a fact type—the only data structure in ORM (relationships are used instead of

attributes). If an object type is identified by a simple fact type (e.g. Gender has Gen-

derCode) this may be abbreviated by placing the reference mode in parentheses.

A bar spanning one or more roles depicts a uniqueness constraint over those roles

(e.g. Each Patient has at most one Gender). A large dot depicts a mandatory constraint (e.g.

Each Patient has some Gender). The circled dot with a cross through it depicts an exclu-

sive-or constraint (Each Patient is a MalePatient or is a FemalePatient but not both). Overviews

of ORM may be found in [13, 12], a detailed treatment in [9], and a metamodel com-

parison between ORM, ER, and UML in [10]. Various dialects of ORM exist, for ex-

ample NIAM [23] and PSM [14].

Fig. 1(b) shows the same subtyping arrangement in UML. In UML, the terms

―class‖ and ―subclass‖ are used instead of ―object type‖ and ―subtype‖‖. The ―{P}‖ is

a non-standard addition to UML to indicate that an attribute is (at least part of) the

preferred identifier for instances of the class. ORM and UML show subtypes outside

their supertype(s), and depict the ―is-a‖ relationship from subtype to supertype by an

arrow. The Barker ER notation [1], arguably the best industrial ER notation, uses an

Euler diagram, placing the subtype shapes within the supertype shape, as shown in

Fig. 1(c). In spite of its intuitive appeal, the Barker ER subtyping notation is less ex-

pressive than that of ORM or UML (e.g. it cannot depict multiple inheritance).

Fig. 1. Partitioning Patient into subtypes in (a) ORM, (b) UML, and (c) Barker ER

{self.gender = m} {self.gender = f}

Patient

nr: Integer {P}
gender: GenderCode

«enumeration»
GenderCode

m
f

gender

MalePatient

prostateStatus [0..1]

FemalePatient

pregnancyCount [1]

{disjoint, complete}

(b)

Patient
(.nr)

Gender
(.code)

has

Male
Patient*

Female
Patient*

{„M‟, „F‟}

PregnancyCount
(.nr)

has

ProstateStatus
(.description)

has

{0 ..}

*Each MalePatient is a Patient who has Gender „M‟.

*Each FemalePatient is a Patient who has Gender „F‟.

 OK 101 101

 103

 102 102 4

 101 M

 102 F

 103 M

(a)

*

The patient example illustrates the three main purposes of subtyping: (1) to indi-

cate that some properties are specific to a given subtype (e.g. prostate status is record-

ed only for male patients); (2) to permit reuse of supertype properties (e.g. gender is

specified once only (on Patient) but is inherited by each of its subtypes); (3) to display

taxonomy (e.g. patients are classified into male and female patients).

In this example, the taxonomy is captured in two ways: (1) the subtyping; (2) the

gender fact type or attribute (this may be needed anyway to record the gender of male

patients with no prostate data). Both ORM and UML allow the possible values for

gender (via gender code) to be declared. All of the diagrams in Fig. 1 are conceptually

incomplete, since they provide no formal connection between the two ways of dis-

playing the classification scheme for patient. For example, there is nothing to stop us

from assigning the gender code ‗F‖ to patient 101 and then assigning the prostate sta-

tus ‗OK‘ for that patient. Even including ―gender‖ as a discriminator to the subtyping,

as allowed in UML (see Fig. 1(b)) and some other versions of ER, will not suffice be-

cause there is still no formal connection between gender codes and the subtypes.

ORM traditionally solved this problem by requiring every subtype to be defined

formally in terms of role paths connected to its supertype(s). For example, the ORM

schema in Fig. 2(a) adds the subtype definitions: Each MalePatient is a Patient who has

Gender ‘M’; Each FemalePatient is a Patient who has Gender ‘F’. In ORM, an asterisk indicates

―derived‖. In this example, the subtype definitions are derivation rules for deriving

the subtypes. In previous versions of ORM, all subtypes had to be derived. ORM 2

removes this restriction, so an asterisk is added to indicate the subtype is derived.

The subtypes and fact types in ORM schema in Fig. 2(a) are populated with sample

data. The population of the subtypes is derivable from the subtype definitions. The

exclusive-or constraint is also derivable (as indicated by the asterisk) from these defi-

nitions given the mandatory and uniqueness constraints on the gender fact type.

Fig. 2. Adding definitions for derived subtypes in (a) ORM and (b) UML

Patient
(.nr)

Male
Patient

Female
Patient

PregnancyCount
(.nr)

has

ProstateStatus
(.description)

has

Patient

nr: Integer {P}

MalePatient

prostateStatus [0..1]

FemalePatient

pregnancyCount [1]

{disjoint, complete}

(a)

(b) (c)
PATIENT

* patient nr

 MALE PATIENT
 o prostate status

FEMALE PATIENT
 * pregnancy count

{0 ..}

While UML does not require subtype definitions, one could add them as notes in a

language like the Object Constraint Language (OCL) [21], as shown in Fig. 2(b).

Adding the constraints shown effectively redefines gender for the specific subclasses.

A similar refinement technique is used in the MADS (Modeling of Application Data

with Spatio-temporal features) approach [18, p. 47]. Industrial versions of ER typical-

ly have no facility for defining subtypes, but could be extended to support this.

As discussed in the next section, subtype definitions/restrictions are not the only

way to align multiple ways of depicting classification schemes. The main point at this

stage is that if a taxonomy is specified in two ways (via both subtypes and fact

types/attributes) then derivation rules or constraints must be provided to formally

align these two mechanisms.

3 Asserted, Derived, and Semi-derived Subtypes

In previous versions of ORM, all subtypes had to be derived. We recently relaxed this

restriction to permit three kinds of subtype: asserted, derived, and semi-derived. An

asserted subtype (or declared subtype) is simply declared without a definition. As-

serted subtypes have always been permitted in UML and ER.

For example, if a gender fact type or attribute is excluded, then the patient subtypes

may be simply asserted as shown in Fig. 3. In this case, the exclusive-or constraint in-

dicating that Patient is partitioned into these two subtypes must be explicitly declared,

since it is not derivable. In ORM 2, this is shown by the lack of an asterisk beside the

exclusive-or constraint. In this case, the classification scheme is depicted in only one

way (via subtyping), so there is no need to provide any derivation rules.

Suppose however, that we still wish to query the system to determine the gender of

patients. In this case, we may derive the gender from subtype membership. In Fig.

4(a) the ORM fact type Patient is of Gender is derived (as noted by the asterisk) by means

of the derivation rule shown. In Fig. 4(b) the UML gender attribute is derived (as in-

dicated by the slash) by means of the derivation rule shown (here using C#). The

UML derivation rule shows just one way to derive gender (e.g. we could instead pro-

vide overriding gender functions on the subclasses).

Fig. 3. The subtypes are simply asserted rather than being derived

Patient
(.nr)

Male
Patient

Female
Patient

PregnancyCount
(.nr)

has

ProstateStatus
(.description)

has

Patient

nr: Integer {P}
/gender

MalePatient

prostateStatus [0..1]

FemalePatient

pregnancyCount [1]

{disjoint, complete}

{0 ..}

Gender
(.code)

has*
{„M‟, „F‟}

{if (this is MalePatient) return “M”;
else return “F”;}

*Patient has Gender iff

 Patient is some MalePatient and Gender = „M‟

 or Patient is some FemalePatient and Gender = „F‟.

(a)

(b)

Fig. 4. The subtypes are asserted, and gender is derived

A derived subtype is fully determined by the derivation rule that defines it. For ex-

ample, the subtypes in Fig. 2 are derived (from gender), not asserted. Notice that Fig.

4 is the reverse of the situation in Fig. 2. Conceptually, a constraint applies between

gender and the subtypes, and different modeling choices are available to satisfy this

constraint (e.g. derive the subtypes from gender, or derive gender from the subtypes).

Industrial ER typically does not support derivation rules in either direction.

Recently we introduced semi-derived subtypes to ORM 2 to cater for rare cases

such as that shown in Fig. 5(a). Here we have incomplete knowledge of parenthood. If

we know that person A is a parent of person B who is a parent of person C, then we

may derive that A is a grandparent. If we know that someone is a grandparent without

knowing the children or grandchildren, we can simply assert that he/she is a grandpa-

rent. The population of the subtype may now be partly derived and partly asserted. In

ORM 2, the semi-derived nature is depicted by a ―
+
‖ (intuitively, half an asterisk, so

half-derived). We use the same notation for fact types, which may also be classified

as asserted, derived, or semi-derived. A semi-derived status is much more common

for fact types than for subtypes. We note in passing that the parenthood fact type has a

spanning uniqueness constraint (hence is many:many), an alethic acyclic constraint,

and a deontic intransitive constraint.

Currently UML has no notation for semi-derived (e.g. see Fig. 5(b)). The situation

could be handled in UML by introducing an association or attribute for asserted

grandparentood, adding a partial derivation rule for derived grandparenthood, and

adding a full derivation rule to union the two (cf. use of extensional and intensional

predicates in Prolog). This is how we formerly handled such cases in ORM [9].

Person
(SSN) ssn {P}

...

Person

Grandparent+ Grandparent

is a parent of

 2

parent

child

0..2

*

+Each derived Grandparent is a Person
 who is a parent of some Person
 who is a parent of some Person.

(a) (b)

Fig. 5. In the ORM schema (a) the subtype Grandparent is semi-derived

4 Rigid Subtypes and Role Subtypes

Recent proposals from the ontology engineering community have employed type me-

taproperties to ensure that subtyping schemes are well formed from an ontological

perspective. Guarino and Welty [5] argue that every property in an ontology should

be labeled as rigid, non-rigid, or anti-rigid. Rigid properties (e.g. being a person) nec-

essarily apply to all their instances for their entire existence. Non-rigid properties (e.g.

being hard) necessarily apply to some but not all their instances. Anti-rigid properties

(e.g. being a patient) apply contingently to all their instances. One may then apply a

meta-constraint (e.g. anti-rigid properties cannot subsume rigid properties) to impose

restrictions on subtyping (e.g. Patient cannot be a supertype of Person).

Later Guizzardi, Wagner, Guarino, and van Sinderen [6] proposed a UML profile

that stereotyped classes into kinds, subkinds, phases, roles, categories, roleMixins and

mixins, together with a set of meta-constraints, to help ensure that UML class models

are ontologically well-formed. This modeling profile is used by Guizzardi in his doc-

toral thesis [7] on ontological foundations for conceptual information models.

While we believe that the above research provides valuable contributions to ontol-

ogy engineering, we have some reservations about its use in industrial information

systems modeling. Our experience with industrial data modelers suggests that the 7-

stereotype scheme would seem overly burdensome to the majority of them. To be fair,

we‘ve also had pushback on the expressive detail of ORM, to which we‘ve replied

―Well, the world you are modeling is that complex—do you want to get it right or

not?‖ Perhaps the same response could be made in defense of the 7-stereotypes.

At any rate, a simpler alternative that we are currently considering for ORM 2

classifies each subtype as either a rigid subtype or role subtype. A type is rigid if and

only if each instance of that type must belong to that type for its whole lifetime (in the

business domain being modeled). Examples include Person, Cat, Animal, Book. In

contrast, any object that may at one time be an instance of a role type might not be an

instance of that type at another time during its lifetime (in the business domain). Here

we use ―role‖ liberally to include a role played by an object (e.g. Manager, Student,

Patient—assuming these are changeable in the business domain) as well as a phase or

state of the object (e.g. Child, Adult, FaultyProduct—assuming changeability).

Though this rigid/role classification scheme applies to any type, we typically re-

quire this distinction to be made only for subtypes (our main purpose is to control

subtype migration, as discussed shortly; also we wish to reduce the classification bur-

Animal

[Dog] [Cat]

{disjoint}

Animal

«rigid»
Dog

«rigid»
Cat

(a) (b)

{disjoint}

kind {readOnly}
...

«rigid»
Animal

{self.kind = „dog‟} {self.kind = „cat‟}
«rigid»
Dog

«rigid»
Cat

[Animal]

[Dog]* [Cat]*

is of

AnimalKind
(.name)

*Each Dog is an Animal that is of AnimalKind „dog‟.

*Each Cat is an Animal that is of AnimalKind „cat‟.

][

*

(a) (b)

den for modelers). As a simple example, Fig. 6 shows how Dog and Cat might be de-

picted as rigid subtypes in ORM and UML. The rigidity notation tentatively being

considered for ORM is square bracketing of the subtype name (violet for alethic as

here; blue with ―
o
‖ for deontic, e.g. changing from male to female might be possible

but forbidden). For UML we have chosen a rigid stereotype. Our next example identi-

fies a case where the rigidity of a root type (here Animal) should also be declared.

 Fig. 6. Rigid subtypes depicted in (a) ORM and (b) UML

Notice that rigidity is a dynamic constraint rather than a static constraint since it

restricts state changes (e.g. no dog may change into a cat). Currently, ORM is being

extended to cater for a variety of dynamic constraints using a formal textual language

to supplement the ORM graphical language [1], and it is possible that rigidity might

end up being captured textually in ORM rather than graphically as shown here.

In the above example, the subtypes are asserted. If instead they are derived, the re-

levant fact type/attribute used in their definition may be constrained by an appropriate

changeability setting with impact on subtype rigidity. In Fig. 7(a) the fact type Animal is

of AnimalKind is made unchangeable (an animal can‘t change its kind), as indicated by

the square brackets (this notation is tentative). In Fig. 7(b) the defining animal kind

attribute is constrained to be read-only (prior to UML 2, this was called ―frozen‖).

In either case, the unchangeability of animal kind combined with the rigidity of

Animal implies that the subtypes are rigid. If we were instead to assert the subtypes

and derive animal kind from subtype membership, the changeability/rigidity settings

would still need to be kept in sync. Notice that even if we declare gender to be un-

changeable in Fig. 4, MalePatient and FemalePatient are not rigid unless Patient is ri-

gid (and that depends on the business domain).

UML 2 [16, 17] recognizes four changeability settings: unrestricted, readOnly,

addOnly, and removeOnly. ORM 2 is currently being extended to enable declaration

of fact type changeability (updateability and deleteability). Barker ER uses a diamond

to indicate non-transferable relationships, but this may not be used for attributes.

Fig. 7. Rigidity of subtypes is now derived (given that Animal is rigid)

Person

AdultChild Teenager

{disjoint}

Person

Child Teenager Adult

(a) (b)

Person

AdultChild Teenager

Toy PopGroup Book

has
favorite-

has
favorite-

has
favorite-

AdultChild Teenager

time

(a) (b)

Child or Teenager or Adult

Teenager or Adult

Adult

as a child had favorite-

Book

Toy

PopGroup

as a teen had favorite-

has favorite-

(c)

Fig. 8. Migration between role subtypes is allowed

To avoid explicitly declaring role subtypes as such, we propose that subtypes may

be assumed to be role subtypes by default. This is similar to the default assumption in

MADS that is-a clusters are dynamic [18, p. 44], but it is unclear whether MADS

provides any graphical way to override the default. Unlike rigid subtypes, migration

between role subtypes is often permitted. As a simple example, a person may play the

role of child, teenager, and adult at different times in his/her lifetime (see Fig. 8).

An extension to ER to distinguish between ―static subtypes‖, ―dynamic subtypes‖

and ―roles‖ has been proposed by Wieringa [22, pp. 96–99], but this proposal is prob-

lematic, as it conflates roles with role occurrences, and reified roles (e.g. employee)

with states of affairs (e.g. employment).

Some decades ago, we met our first application where we had to retain history of

objects as they passed through various roles (e.g. applicant, employee, past-employee

etc.). Although such cases often arise in industry, we are unaware of their discussion

in published papers on conceptual modeling. We have space here to discuss just one

of the patterns we developed for dealing with such historical subtype migration.

The simplest pattern deals with linear state transitions. For example, in Fig. 9(a)

each role has specific details, and we wish to maintain these details of a person (e.g.

favorite toy, favorite pop group) as he/she passes from one role to another.

An appropriate pattern for this case is to start with a supertype that disjoins all the

roles, then successively subtype to smaller disjunctions, as shown in Fig. 9(c). We call

this the decreasing disjunctions pattern. Depending on the business domain, a simple

name may be available for the top supertype (e.g. Person).

As a related issue, consider the well known Party pattern shown in Fig. 10. Onto-

logically, Person and Organization are substance sortals (they carry their own natural,

intrinsic principle of identity). If ―Party‖ simply means ―Person or Organization‖ (a

disjunction of sortals), then Party is a mixin type and there is no problem.

Fig. 9. Retaining history of subtype-specific details as a person changes roles

Party

Person Organization

PERSON

ORGANIZATION

PARTY

{complete,
disjoint}

Party

Person Organization

(a) (b) (c)

[Person] Customer

Personal
Customer

Corporate
Customer

[Organization]

{complete,
 disjoint}

Customer

Personal
Customer

Corporate
Customer

Party

Person Organization

Party {disjoint}

{overlapping}
{overlapping}

«rigid» «rigid»

(a) (b)

Fig. 10. The Party pattern

 But what if ―Party‖ has the sense of a role type (e.g. Customer)? If we replace

―Party‖ by ―Customer‖ in Fig. 10, then Guizzardi [7, p. 281] claims the schema is not

well-formed because a rigid universal (e.g. Person) cannot be a subtype of an anti-

rigid one (e.g. Customer). For information modeling purposes however, if each person

or organization in the business domain must be a customer, then it‘s acceptable to

specialize Customer into Person and Organization, even though ontologically this is

incorrect (in the real world of which the business domain is just a part, not all persons

are customers). Our definition of rigid type is relative to the business domain. In the

case just described, Customer is a rigid type in this sense, even though it is not rigid in

the ontological sense. Information models of business domains can be well formed

even though they are not proper ontologies.

If however our business domain includes (now or possibly later) some people or

organizations that are not customers, then we do need to remodel, since Customer is

no longer rigid even in our sense. One of many possible solutions using Party as a

mixin type is shown in Fig. 11. This solution differs from that of Guizzardi [7, p.

282], where Person and Customer have no common supertype. Our original formali-

zation of ORM, which made top level entity types mutually exclusive by default, re-

quires the introduction of a supertype such as Party. This can be pragmatically useful

(e.g. by allowing a simple global identification scheme for all parties).

Fig. 11. Remodeling is needed when Customer is a role type

However to avoid unnatural introduction of supertypes, we and a colleague long

ago allowed the mutual exclusion assumption to be overridden by explicitly declaring

an overlap possibility (depicted by overlapping ―O‖s) between top level types [8]. The

same symbol is now used for this purpose in the MADS approach. To reduce nota-

tional clutter, and as a relaxation for ORM 2, we now allow overlap possibility be-

tween top level types to be implicitly deduced from the presence of a common sub-

type. With this understanding, the Party supertype could be removed from Fig. 11.

Such a relaxation however should be used with care. For example, a UML class di-

agram produced by a UML expert depicted the classes Cashier and Customer. When

we asked the expert whether it was possible for a customer to be a cashier, he said

―Maybe‖. However nothing on the class diagram indicated this possibility, just as it

did not reveal whether a customer could be a cashier transaction (another class on the

diagram). The class diagram was little more than a cartoon with informal semantics.

It is sometimes useful in the modeling process to delay decisions about whether

some service will be performed in an automated, semi-automated, or manual manner.

For example, we can decide later whether cashiers will be ATMs and/or humans. Un-

til we make that decision however, it is safer to allow for all possibilities (e.g. by ex-

plicitly declaring an overlap possibility between Cashier and Customer). Otherwise,

one should explicitly indicate if one‘s current model is to be interpreted informally.

A radically different ―two-layered approach‖ by Parsons and Wand [19] allows in-

stances to be asserted without requiring them to belong to a type. While interesting,

this approach seems unattractive on both conceptual grounds (e.g. even with surrogate

identifiers, instances must also be assigned natural identifiers, which are typically de-

finite descriptions that invoke types) and implementation grounds.

5 Conclusion

This paper discussed a number of ways to enrich the modeling of subtyping, especial-

ly within ORM 2. With options for asserted, derived, and semi-derived subtypes, clas-

sification schemes may be specified in two ways, and derivation rules/constraints are

then needed to keep these consistent, regardless of the direction of derivation. A lean

ontological extension was proposed based on rigid and role subtypes, mainly to con-

trol subtype migration, with appropriate mechanisms for synchronizing subtype ri-

gidity with fact type/attribute changeability. The decreasing disjunctions data model

pattern was provided to deal with a common case of historical subtype migration, the

party pattern was analyzed to highlight a fundamental difference between information

models and ontologies, and a refinement was suggested for determining whether top

level types are mutually exclusive.

The proposals for ORM 2 discussed in this paper are being implemented in

NORMA [4], an open-source plug-in to Visual Studio that can transform ORM mod-

els into relational, object, and XML structures. Relational mapping of subtypes has

been largely discussed elsewhere (e.g. [9]), and the dynamic aspects (e.g. non-

updatability for rigid properties) can be handled by appropriate triggers. Object mod-

els treat all classes as rigid. To cater for migration between role subtypes as well as

multiple inheritance when mapping to single-inheritance object structures (e.g. C#),

is-a relationships are transformed into injective associations, an approach that bears

some similarity to the twin pattern for implementing multiple inheritance [15].

Further research is needed to refine both the graphical and textual languages of

ORM 2 for advanced subtyping aspects, and to improve the code generation capabili-

ties of NORMA to ensure an optimal implementation of these features.

References

1. Balsters, H., Carver, A., Halpin, T. & Morgan, T. 2006, ‘Modeling Dynamic Rules in

ORM’, On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops, eds. R.

Meersman, Z. Tari, P. Herrero et al., Montpellier. Springer LNCS 4278, pp. 1201-10.

2. Barker, R. 1990, CASE*Method: Tasks and Deliverables, Addison-Wesley, Wokingham.

3. Chen, P. P. 1976, ‗The entity-relationship model—towards a unified view of data‘. ACM

Transactions on Database Systems, 1(1), pp. 9 36.

4. Curland, M. & Halpin, T. 2007, ‘Model Driven Development with NORMA’, Proc. 40th

Int. Conf. on System Sciences (HICSS-40), 10 pages, CD-ROM, IEEE Computer Society.

5. Guarino, N. & Welty, C. 2002, ‘Evaluating Ontological Decisions with OntoClean’,

Communications of the ACM, vol. 45, no. 2, pp. 61-65.

6. Guizzardi, G., Wagner, G., Guarino, N. & van Sinderen, N. 2004, ‗An Ontologically Well-

Founded Profile for UML Conceptual Models, Proc. 16th Int. Conf. on Advanced Inf. Sys.

Engineering, CAiSE2004, eds. A, Persson & J. Stirna. Springer LNCS 3084, pp. 112-126.

7. Guizzardi, G. 2005, Ontological Foundations for Structural Conceptual Models, CTIT

PhD Thesis Series, No. 05-74, Enschede, The Netherlands.

8. Halpin, T. & Proper, H. A. 1995, ‗Subtyping and polymorphism in object-role modelling‘,

Data & Knowledge Engineering, vol. 15, no. 3, pp. 251–281.

9. Halpin, T. 2001, Information Modeling and Relational Databases, Morgan Kaufmann,

San Francisco.

10. Halpin, T. 2004, ‗Comparing Metamodels for ER, ORM and UML Data Models‘, Ad-

vanced Topics in Database Research, vol. 3, ed. K. Siau, Idea Publishing Group, Hershey

PA, USA, Ch. II (pp. 23-44).

11. Halpin, T. 2005, ‘Higher-Order Types and Information Modeling’, Advanced Topics in

Database Research, vol. 4, ed. K. Siau, Idea Publishing Group, Hershey, pp. 218-237.

12. Halpin, T. 2005, ‗ORM 2‘, On the Move to Meaningful Internet Systems 2005: OTM 2005

Workshops, eds. R. Meersman, et al., Cyprus. Springer LNCS 3762, pp 676-87.

13. Halpin, T. 2006, ‘Object-Role Modeling (ORM/NIAM)’, Handbook on Architectures of

Information Systems, 2nd edition, Springer, Heidelberg, pp. 81-103.

14. ter Hofstede, A. H. M., Proper, H. A. & Weide, th. P. van der 1993, ‗Formal definition of

a conceptual language for the description and manipulation of information models‘, In-

formation Systems, vol. 18, no. 7, pp. 489-523.

15. Mössenböck, H., ‗Twin—A Design Pattern for Modeling Multiple Inheritance‘, Online:

http://www.ssw.uni-linz.ac.at/Research/Papers/Moe99/Paper.pdf.

16. Object Management Group 2003, UML 2.0 Infrastructure Specification. Online:

www.omg.org/uml.

17. Object Management Group 2003, UML 2.0 Superstructure Specification. Online:

www.omg.org/uml.

18. Parent, C., Spaccapietra, S. & Zimányi, E. 2006, Conceptual Modeling for Traditional and

Spatio-Temporal Applications, Springer-Verlag, Berlin.

19. Parsons, J. & Wand, Y. 2000, ‗Emancipating Instances from the Tyranny of Classes in In-

formation Modeling‘, ACM Transactions on Database Systems, vol. 5, no. 2, pp. 228-268.

20. Rumbaugh, J., Jacobson, I. & Booch, G. 1999, The Unified Language Reference Manual,

Addison-Wesley, Reading, MA.

21. Warmer, J. & Kleppe, A. 2003, The Object Constraint Language, 2nd Edition, Addison-

Wesley.

22. Wieringa, R. J. 2003, Design Methods for Reactive Systems, Morgan Kaufmann, San

Francisco.

23. Wintraecken J. 1990, The NIAM Information Analysis Method: Theory and Practice,

Kluwer, Deventer, The Netherlands.

http://www.omg.org/uml

