
Verbalizing Business Rules: Part 8

Terry Halpin
Northface University

Business rules should be validated by business domain experts, and hence specified using concepts and
languages easily understood by business people. This is the eighth in a series of articles on expressing
business rules formally in a high-level, textual language. The first article [4] discussed criteria for a
business rules language, and verbalization of simple uniqueness and mandatory constraints on binary
associations. Article two [5] examined hyphen-binding, and verbalization of internal uniqueness constraints
that span a whole association, or that apply to n-ary associations. Article three [6] covered verbalization of
basic external uniqueness constraints. Article four [7] considered relational-style verbalization of external
uniqueness constraints involving nesting or long join paths, as well as attribute-style verbalization of
uniqueness constraints and simple mandatory constraints. Article five [8] discussed verbalization of
mandatory constraints on roles of n-ary associations, and disjunctive mandatory constraints (also known as
inclusive-or constraints) over sets of roles. Article six [9] considered verbalization of value constraints.
Article seven [10] examined verbalization of subset constraints. This eighth article discusses verbalization
of equality constraints.

Verbalization of equality constraints between single roles

Figure 1 shows a fragment from an ORM schema about hospital patients discussed in [11]. The circled “=”
connecting the roles played by Patient indicates that for each state of the business domain, the population of
these two roles must be equal. In other words, if we know a patient’s systolic BP (blood pressure), we also
know his/her diastolic BP, and vice versa. This illustrates a simple equality constraint between two fact
type roles. An equality constraint may be applied only if the roles are compatible (i.e. based on identical or
overlapping types). At the external level, BP is usually displayed as a single figure, for example 120/80,
read as “120 over 80”, where the first number measures the systolic blood pressure (maximum pressure
exerted when the heart contracts) in millimeters of mercury, and the second number indicates the diastolic
blood pressure (pressure in the arteries when the heart is at rest). In this schema, the two facts underlying
the overall BP reading are displayed separately.

Patient
(Nr)

has systolic-

has diastolic-

BloodPressure
(mmHg)=Family

Name
is of / has

Figure 1 An equality constraint between single roles.

This equality constraint may be formally verbalized in any of the following ways:

Each Patient who has a systolic BloodPressure also has a diastolic BloodPressure and conversely.

For each Patient:
that Patient has a systolic BloodPressure if and only if that Patient has a diastolic BloodPressure.

For each Patient1:
Patient1 has a systolic BloodPressure if and only if Patient1 has a diastolic BloodPressure.

If a Patient has a systolic BloodPressure then that Patient has a diastolic BloodPressure and conversely.

If a Patient has a systolic BloodPressure then that Patient has a diastolic BloodPressure and
if a Patient has a diastolic BloodPressure then that Patient has a systolic BloodPressure.

1

The last two readings reflect the fact that an equality constraint between two arguments is equivalent
to a conjunction of two subset constraints, one in either direction. As usual, the pronoun “who” may be
replaced by “that” or “which”, the quantifier “a” may be replaced by “some”, “at least one”, or “an”, “for each”
may be replaced by “given any”, and “if and only if” may be abbreviated to “iff”. As explained in an earlier
article [5], the use of hyphens in the predicates binds the adjectives “systolic” and “diastolic” to the object
type name, so the quantifier “a” precedes them in the verbalization.

Figure 2 shows a UML class diagram for our patient example, assuming that the blood pressure facts
are modeled in terms of attributes rather than associations. As there is no graphic way of depicting the
equality constraint in UML, it is expressed in OCL within an attached note. Because the note is attached to
the Patient class, this is understood to provide the context for the OCL constraint. Clearly, each of the
verbalization patterns shown above provides a higher level declaration of the constraint that is more likely
to be understood by a non-technical domain expert.

patientNr [1]
familyName [1]
systolicBP [0..1]
diastolicBP [0..1]

Patient
{ (systolicBP -> isEmpty()
 and
 diastolicBP -> isEmpty())
 or
 (systolicBP -> notEmpty()
 and
 diastolicBP -> notEmpty()) }

Figure 2 The ORM schema from Figure 1 expressed as a UML class diagram.

In addition to the relational-style verbalization already discussed, an attribute-style verbalization may

be provided, as follows. Although less natural than the relational-style verbalization, it is likely to be more
understandable to non-technical people than the OCL formulation.

 For each Patient:
 systolicBP exists if and only if diastolicBP exists.

Note that this verbalization may also be applied directly to the ORM schema, so long as we supply the
attribute names used in the UML diagram as corresponding role names on the ORM schema.

Though rare in practice, an n-ary version of an equality constraint may be applied to a set of three or
more compatible roles (or role-sequences). This is equivalent to multiple binary equality constraints
between all the pairs of roles (or role-sequences). A simple example is shown in Figure 3, in both ORM and
UML notations. The “{U1}” annotation is a non-standard extension to UML to express the uniqueness
constraint that each star name refers to at most one star [6].

2

Star
(Id)

has x-

has y- Cartesian
Coordinate

(parsec)

=
Star

Name
is of / has

has z-

) (b)

starId [1]
starName [1] {U1}
xCoord [0..1]
yCoord [0..1]
zCoord [0..1]

Star
{ (xCoord -> isEmpty()
 and
 yCoord -> isEmpty()
 and
 zCoord -> isEmpty())
 or
 (xCoord -> notEmpty()
 and
 yCoord -> notEmpty()
 and
 zCoord -> notEmpty()) }

[xCoord]

[yCoord]

[zCoord]

(a

Figure 3 An n-ary equality constraint in (a) ORM, and (b) UML.

 Such n-ary constraints may be verbalized either as conjunctions of n-1 binary constraints, or directly
as follows in relational-style or attribute-style (the latter verbalization applies also to the ORM schema,
using the role names supplied there). If desired, a synonym for “not exists” such as “is absent” may be
introduced. Note that there is no simple extension based on “iff”; for example, p iff (q and r) is true in some
cases other than the cases where p, q, and r are either all true or all false.

For each Star all or none of the following are true:
that Star has an x-CartesianCoordinate;
that Star has a y-CartesianCoordinate;
that Star has a z-CartesianCoordinate.

 For each Star:
 (xCoord exists and yCoord exists and zCoord exists) or

(xCoord not exists and yCoord not exists and zCoord not exists).

Verbalization of equality constraints between role sequences

Equality constraints may also be specified between compatible role sequences (of two or more roles).
Consider a hospital domain where patients may have their blood pressure measured at most once a day, and
where a history is kept of the results. Figure 4 shows one way to model this in ORM. Here the equality
constraint is between the Patient-Date role-pairs projected from the two ternary associations. The constraint
indicates that for any given patient and date, we know either both the systolic and diastolic BP readings, or
neither reading.

Patient
(Nr)

Date
(ymd)

… on … had systolic-...

… on … had diastolic-...

= BloodPressure
(mmHg)

Family
Name

is of / has

Figure 4 An equality constraint between role-pairs.

This pair-equality constraint may be verbalized in relational style as follows.

Each Patient who on a Date had a systolic BloodPressure also on that Date had a diastolic BloodPressure
and conversely.

For each Patient and Date:
that Patient on that Date had a systolic BloodPressure
if and only if
that Patient on that Date had a diastolic BloodPressure.

For each Patient1 and Date1:
Patient1 on Date1 had a systolic BloodPressure
if and only if
Patient1 on Date1 had a diastolic BloodPressure.

If a Patient on a Date had a systolic BloodPressure then that Patient on that Date had a diastolic BloodPressure
and conversely.

If a Patient on a Date had a systolic BloodPressure then that Patient on that Date had a diastolic BloodPressure and
if a Patient on a Date had a diastolic BloodPressure then that Patient on that Date had a systolic BloodPressure.

 As discussed in earlier articles, if the same object type plays more than one role in an association,
either role names, or numeric subscripts appended to the object type name, may be used to distinguish the
role players.

In UML it would be unusual to model this example using ternary associations. Instead one would
normally introduce a BPtest class, as shown in Figure 5 (an identifier for BPtest is assumed). This removes
the need to verbalize a role-sequence equality constraint in this case. Note that this modeling alternative
would normally be preferred in ORM as well, where an explicit identifier such as TestNr would be also
included to identify blood pressure tests. For a discussion of optimization heuristics for ORM schema
transformation, see chapter 12 of [1].

3

patientNr
familyName

Patient

testDate
systolicBP
diastolicBP

BPtest*1

Figure 5 Remodeling in UML of the Figure 4 domain avoids the need for an equality constraint.

These verbalization patterns may be extended in obvious ways to cater for other cases, where the role-

sequences may contain more than two roles, or are projected from a role path spanning multiple
associations. As a simple example of the former, consider the equality constraint in Figure 6. Here each
role sequence contains three roles projected from one of the ternaries. In this domain, patients may have
their blood pressure measured at any given clinic at most once a day, but may attend multiple clinics on the
same day. A history is kept of the results.

Patient
(Nr)

Date
(ymd)

… at … on … had systolic-...

… at … on … had diastolic-...

= BloodPressure
(mmHg)

Family
Name

is of / has

Clinic
(Id)

Figure 6 An equality constraint between two role-sequences, each of which contains 3 roles.

 This equality constraint may be verbalized by simply generalizing the previous patterns. For example:

For each Patient, Clinic and Date:
that Patient at that Clinic on that Date had a systolic BloodPressure
if and only if
that Patient at that Clinic on that Date had a diastolic BloodPressure.

 As a simple example of a subset constraint involving a projection from a role path, consider the ORM
schema shown in Figure 7. The equality constraint declares that a person lives in a country if and only if
that person lives in a state that is in that country. Here one role pair comprises the predicate within the fact
type Person lives in Country. The other role pair is obtained by projecting on the first and last roles of the join
path Person lives in a State that is in Country. This path involves a conceptual join between the roles on that path
that are played by State. For further discussion of such join-constraints, see [2].

Person
(Id)

State

State
Code

Country
(Code)

u
lives in

lives in *

is in

has

=

Figure 7 An equality constraint involving a role path projection.

4

 The asterisk on the Person lives in Country association indicates that this fact type is derived. In this case,
the derivation rule is captured by the equality constraint, and may be verbalized thus:

 Person lives in Country iff

Person lives in a State that is in that Country.

If this rule is added as a textual derivation rule to the ORM diagram, the graphical equality constraint
would normally be omitted. Note that the left-hand expression in the rule denotes a simple fact type, while
the right-hand side of this verbalization applies the existential quantifier (“a”) to the join object type (State)
on the role path. The equality constraint is suitable for deriving the left-hand fact type, but cannot be used
to derive the state in which a person lives. The high level verbalization of the rule may be formally
captured by the following logical expression:

∀x:Person ∀y:Country [x lives in y ≡ ∃z:State (x lives in z & z is in y)]

If one argument of an equality constraint comprises all the roles in a fact type F, and the other

argument is a role projection from a path containing more roles, then the equality constraint provides a full
derivation rule (iff rule) for the fact type F. Similarly, a subset constraint from a role projection to a fact
type provides a partial derivation rule (if rule) for that fact type. For example, if we can know that some
people live in some country without knowing the state they live in (our knowledge is incomplete), then the
equality constraint is replaced by a subset constraint, and the fact type Person lives in Country is only partially
derivable from the join path.

Full (but not partial) derivation rules for a fact type may be captured in UML by annotating the
derived association with a slash “/”, and adding the derivation rule in text. In Figure 8 this rule is specified
in OCL [13]. This attribute version of the rule may also be used in ORM if desired. As UML lacks any
graphical notation for specifying value-based identification schemes, I’ve indicated the simple
identification schemes using “{P}” and the composite identification scheme with a note. I’ll say more about
derivation rules in a later article.

id {P}

Person

code

State
* 1

code {P}

Country
* 1

1*
/Lives in

{Person.country = Person.state.country}

State.code is unique
within a given Country

Figure 8 Specifying a derivation rule in UML.

That completes our coverage of equality constraints and their verbalization. The next article considers

exclusion constraints.

References

1. Halpin, T. A. 2001, Information Modeling and Relational Databases, Morgan Kaufmann, San

Francisco.
2. Halpin, T.A. 2002, ‘Join Constraints’, Proc. Seventh CAiSE/IFIP-WG8.1 International Workshop on

Evaluation of Modeling Methods in Systems Analysis and Design, eds. T. Halpin, J. Krogstie, K. Siau,
Toronto, Canada, pp. 121-131, URL: http://www.orm.net/pdf/JoinConstraints.pdf.

3. Halpin, T. A. 2002, ‘Metaschemas for ER, ORM and UML Data Models: A Comparison’, Journal of
Database Management, vol. 13, No. 2, pp. 20-29, Idea Publishing Group, Hershey PA, USA.

4. Halpin, T. A. 2003, ‘Verbalizing Business Rules: Part 1’, Business Rules Journal, Vol. 4, No. 4 (April
2003), URL: http://www.BRCommunity.com/a2003/b138.html.

5

http://www.brcommunity.com/a2003/b138.html

6

5. Halpin, T. A. 2003, ‘Verbalizing Business Rules: Part 2’, Business Rules Journal, Vol. 4, No. 6 (June
2003), URL: http://www.BRCommunity.com/a2003/b152.html.

6. Halpin, T. A. 2003, ‘Verbalizing Business Rules: Part 3’, Business Rules Journal, Vol. 4, No. 8
(August 2003), URL: http://www.BRCommunity.com/a2003/b163.html.

7. Halpin, T. A. 2003, ‘Verbalizing Business Rules: Part 4’, Business Rules Journal, Vol. 4, No. 10
(October 2003), URL: http://www.BRCommunity.com/a2003/b172.html.

8. Halpin, T. A. 2004, ‘Verbalizing Business Rules: Part 5’, Business Rules Journal, Vol. 5, No. 2
(February 2004), URL: http://www.BRCommunity.com/a2004/b179.html.

9. Halpin, T. A. 2004, ‘Verbalizing Business Rules: Part 6’, Business Rules Journal, Vol. 5, No. 4 (April
2004), URL: http://www.BRCommunity.com/a2004/b183.html.

10. Halpin, T. A. 2004, ‘Verbalizing Business Rules: Part 7’, Business Rules Journal, Vol. 5, No. 7 (July,
2004), URL: http://www.BRCommunity.com/a2004/b198.html.

11. Halpin, T., Evans, K., Hallock, P. & MacLean, B. 2003, Database Modeling with Microsoft Visio for
Enterprise Architects, Morgan Kaufmann, San Francisco.

12. Object Management Group 2003, UML 2.0 Infrastructure, URL: http://www.omg.org/uml.
13. Object Management Group 2003, UML 2.0 Object Constraint Language, URL:

http://www.omg.org/uml.

http://www.brcommunity.com/a2003/b152.html
http://www.brcommunity.com/a2003/b152.html
http://www.brcommunity.com/a2003/b172.html

