
UML data models from an ORM perspective (part 4) 1

UML data models from an ORM perspective:
Part 4
by Dr. Terry Halpin
Director of Database Strategy, Visio Corporation
This article first appeared in the August 1998 issue of the Journal of Conceptual Modeling, published by
InConcept.

This paper is the fourth in a series of articles examining data modeling in the Unified
Modeling Language (UML) from the perspective of Object Role Modeling (ORM). Part 1
provided historical background and design criteria for modeling languages, and discussed
object reference and single-valued attributes. Part 2 discussed multi-valued attributes,
basic constraints, and instantiation using UML object diagrams or ORM fact tables. Part
3 compared UML associations and related multiplicity constraints with ORM
relationship types and related uniqueness, mandatory role and frequency constraints; it
also contrasted instantiation of associations using UML object diagrams and ORM fact
tables. In Part 4 we look at associations in more detail, contrasting ORM nesting with
UML association classes, and ORM co-referencing with UML qualified associations, then
discuss exclusion constraints, and summarize how the two methods compare with respect
to terms and notations for data structures and instances.

Association classes

Unlike many ER versions, both UML and ORM allow associations to be objectified as first
class object types, called association classes in UML and nested object types (or objectified
relationship types) in ORM. UML requires the same name to be used for the original
association and the association class, impeding natural verbalization of at least one of
these constructs. In contrast, ORM nesting is based on linguistic nominalization (a verb
phrase is objectified by a noun phrase), thus allowing both to be verbalized naturally,
with different names for each. When an association is objectified, VisioModeler
automatically creates a name for the nested object type, which you are free to edit. UML
allows the association class name to be displayed on the association or the association
class, or both.

In spite of identifying association classes with their underlying association, UML
displays them separately, making the connection by a dashed line (see Figure 1). Each
person may write many papers, and each paper is written by at least one person. In the
UML depiction, we have used “{P}” to indicate the primary reference attributes used for

UML data models from an ORM perspective (part 4) 2

human communication about persons and papers. Since authorship is m:n, the association
class Writing has a primary reference scheme based on the combination of person and
paper (e.g. the writing by person ‘Norma Jones’ of paper 33). The optional period attribute
stores how long that person took to write that paper. Instead of distancing the objectified
association from its underlying association, ORM intuitively envelops the association with
an object type frame. Writing is marked independent (displayed with “!”) to indicate that
a writing object may exist, independently of whether we record its period. ORM displays
Period as an object type, not an attribute, and includes its unit.

Figure 1: Writing is depicted as an objectified association in UML and ORM

Objectified relationships in standard ORM must have at least two roles, and must
either have a single, spanning uniqueness constraint or be a 1:1 binary. A Dutch variant of
ORM known as FCO-IM allows unaries to be objectified, but this adds no extra
expressibility and is not supported in Visio technology. UML allows any association
(binary and above) to be objectified into a class, regardless of its multiplicity constraints.
In particular UML allows objectification of n:1 associations, unlike ORM (see Figure 2).

Figure 2: Objectification of n:1 associations is allowed in UML but not ORM

ORM currently forbids such cases, mainly to encourage modelers to conceptualize
facts in elementary rather than compound form. For example, since each moon orbits only
one planet, we can specify its orbital period without having to mention its planet. Hence

Writing

period [0..1]

Person
(name)

Paper
(nr)

wrote

"Writing !"

Period
(days)+

took

personName {P}

Person Paper
paperNr {P}

1..
author

UML ORM

 period

Moon
(name)

Planet
(name)

orbits

"Orbit"

Period
(days)+

takes

moonName {P}

Moon Planet
planetName {P}1*

UML illegal ORM

Orbits

UML data models from an ORM perspective (part 4) 3

ORM requires this case to be modeled using two separate fact types, as shown in Figure 3.
This also facilitates removal/addition of mandatory role constraints on the fact types
independently (e.g. the nested version has to be completely remodeled if we now decide
to keep period facts mandatory but make planet facts optional). However, if an
experienced modeler aware of the implications still finds it easier to think about a
situation as a nested n:1 association, there may be some argument for relaxing ORM’s
restriction, just as we relaxed it for 1:1 cases to avoid arbitrary decisions about relative
importance. If enough people feel this way, ORM could be relaxed to downgrade this
error to a warning, and mapping algorithms would add a pre-processing step to re-attach
roles and adjust constraints internally.

Figure 3: ORM models n:1 association classes instead as separate, elementary fact types

Qualified associations
In Part 2 of this series, we saw that UML has no graphic notation to capture ORM external
uniqueness constraints across roles that are remodeled as attributes in UML. Hence we
introduced our own {Un} notation to append as textual constraints to the constrained
attributes (see Part 2, Figures 4 and 5). Simple cases where ORM uses an external
uniqueness constraint for co-referencing can also be modeled in UML using qualified
associations. Here, instead of depicting the relevant ORM roles or object types as attributes,
UML uses a class, adjacent to a qualifier, through which connection is made to the relevant
association role. A qualifier in UML is a set of one or more attributes, whose values can be
used to partition the class, and is depicted as a rectangular box enclosing its attributes.
Figure 4 is based on an example from the UML standard document [4], along with the
ORM counterpart.

Figure 4: Qualified association in UML, and co-referenced object type in ORM

Moon
(name)

Planet
(name)orbits

Period
(days)+

orbits in

accountNr

Bank

Person

*

Bank
(name)

Account u

AccountNr

Person
(custnr)

is in

has

is used
by

uses

UML ORM

0..1

UML data models from an ORM perspective (part 4) 4

Here each bank account is used by at most one person, and each person may use
many accounts. In the UML model, the attribute accountNr is used as a qualifier on the
association, effectively partitioning each bank into different accounts. In the ORM model,
an Account object type is explicitly introduced, and is referenced by combining its bank
with its (local) account number. The circled “u” may be replaced by a “P” to indicate
primary reference.

 The UML notation is not only less clear, but less adaptable. For example, if we now
want to record something about the account (e.g. its balance) we need to introduce an
Account class, and the connection to accountNr is unclear. For a similar example, see [2]
(p. 92, Fig. 5.10), where product is used with Order to qualify an order line association:
again, this is unfortunate, since we would normally introduce a Product class to record
data about products, and relevant connections are then lost. As a complicated example of
this deficiency, see [1] (p. 51, Fig. 3.14) where the semantic connection between Node and
nodeName is lost. The problem can be solved in UML by using an association class
instead, though this is not always natural. The use of qualified associations in UML is
hard to motivate, but may be partly explained by their ability to capture some compound
uniqueness constraints in the standard graphic notation, rather than relying on non-
standard textual notations (such as our {Un} notation).

ORM’s concept of an external uniqueness constraint that may be applied to a set of
roles in one or more predicates provides a simple, uniform way to capture all of UML’s
qualified associations and unique attribute combinations, as well as other cases not
expressible in UML graphical notation (e.g. cases with m:n predicates or long join paths).
As always, the ORM notation has the further advantage of facilitating validation through
verbalization and multiple instantiation.

Or-associations
UML uses the term or-association for one of many associations stemming from a class,
where at any given time each class member may participate in at most one of these
associations. To indicate this, UML uses what it calls an or-constraint between the
associations, attaching the constraint string “{or}” to a dotted line connecting the relevant
associations. Figure 5 is based on an example from the UML standard. For simplicity,
reference schemes and other constraints are omitted.

Figure 5: No account is used by both a person and a corporation

Account

Person

Corporation

{or} Account

Person

Corporation

is used by

is used by

UML data models from an ORM perspective (part 4) 5

UML’s use of “or” for this constraint is confusing because it is used in an exclusive
instead of inclusive sense (in contrast to virtually all computer languages). An alternative
such as “xor” would be less ambiguous, and hence safer, even if artificial.1 There is
another possible confusion arising from the standard document itself. A literal reading of
the latest version (1.2) of the UML standard indicates that the constraint simply means
that an account is used by at most one of the two choices (person or corporation). However,
some authors argue that its use in OMT (a precursor of UML) means each account must
be used by exactly one of these choices ([1], p. 50). If this is the case, the constraint means
that the disjunction is both exclusive and mandatory. Given that the lengthy UML
standard currently contains a number of ambiguities and inconsistencies, I’m not sure
which reading is actually correct. For now, I’ll assume that the weaker reading (exclusive)
is correct. In this case, the constraint is captured in ORM by an exclusion constraint, shown
by connecting “⊗ ” by dotted lines to the relevant roles (see above figure). If the stronger
reading is correct2, a disjunctive mandatory role constraint needs to be added as well (see
Part 1).

UML or-constraints apply between single roles. The standard seems to imply that
these roles must belong to different associations. If so, UML cannot use an or-constraint
between roles of a ring fact type (e.g. between the husband and wife roles of a marriage
association). ORM exclusion constraints cover this case, as well as many other cases not
expressible in UML graphic notation. ORM exclusion constraints may apply to any set of
compatible role-sequences, by connecting “⊗ ” by dotted lines to the relevant role-
sequences. As a trivial example, consider the difference between the following two
constraints: no person both wrote and reviewed a book; no person wrote and reviewed
the same book. ORM clearly distinguishes these by noting the precise arguments of the
constraint (see Figure 6).

Figure 6: (a) no person wrote and reviewed; (b) no person wrote and reviewed the same book

The pair-exclusion constraint in Figure 6(b) can be expressed in UML by adding a
comment box that includes a textual constraint written in some language (e.g. OCL), and
connecting this by dotted lines to the two associations. However this notation is both
cluttered and non-standard (since UML allows users to pick their own language to write
textual constraints).

UML has no graphic notation for exclusion between attributes, or between attributes
and associations. In Figure 7(a), the unary predicate must be modeled in UML as a

1 After the original publication of this article, UML 1.3 replaced the “or” constraint notation by “xor”
2 In UML 1.3, the xor constraint was clarified to mean the stronger reading, i.e. “exactly one”

Person Book Person Book

wrote wrote

reviewed reviewed

(a) (b)

UML data models from an ORM perspective (part 4) 6

Boolean attribute, and the contract predicate would probably be modeled as a
contractDate attribute. In Figure 7(b), the completion predicate would be modeled in
UML as a completionDate attribute of the Project class, while resource usage would
normally be modeled as an association between Project and Resource classes. If we made
these modeling choices in UML, we must resort to non-standard notations or textual
constraints to add exclusion constraints between attributes (a) or between an attribute and
association (b). There are alternative ways to model these cases in UML (e.g. using
subtypes) that offer more chance to capture the constraints graphically, but it is clear that
UML’s or-constraint is far less expressive than ORM’s exclusion constraint.

Figure 7: A comparative summary of data structure concepts

We’ve now covered essentially all the high level data structures that can be specified
in graphic notation on ORM data models and UML class diagrams. As we discuss in a
later issue, collection types may also be specified in both ORM and UML via textual
annotations. Table 1 summarizes the differences between the two modeling methods with
respect to terms and graphic (not textual) notations for data instances and structures. We
still have several constraints to discuss, so will delay provision of a summary table about
constraints till a later issue.

Employee
(empnr)

is tenured

Date
(mdy)

is contracted till

Project
(nr)

Resource
(code)

Date
(mdy)

was completed on

uses

(a) (b)

UML data models from an ORM perspective (part 4) 7

Table 1: Basic correspondence between ORM and UML conceptual data concepts

Data instances/structures

ORM UML

Entity Object

Value Data value

Object Object or Data value

Entity type Class

Value type Data type

Object type Class or Data type

— { use relationship type } Attribute

Unary relationship type — { use Boolean attribute }

2+-ary relationship type Association

2+-ary relationship instance Link

Nested object type Association class

Co-reference Qualified association §

§ = incomplete coverage of corresponding concept

Later issues

Later issues will discuss more advanced graphic constraints in both ORM and UML
(subset, equality, aggregation, ring, join etc.), subtyping, derivation rules and queries.

References

1. Blaha, M. & Premerlani, W. 1998, Object-Oriented Modeling and Design for Database
Applications, Prentice Hall, New Jersey.

2. Fowler, M. with Scott, K. 1997, UML Distilled, Addison-Wesley.

3. Halpin, T. 1995, Conceptual Schema and Relational Database Design, 2nd edn, Prentice
Hall Australia.

4. OMG-UML v1.2, OMG UML Revision Task Force website,
http://uml.systemhouse.mci.com/.

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

http://uml.systemhouse.mci.com/

