
UML data models from an ORM perspective (part 8) 1

UML data models from an ORM perspective:
Part 8
by Dr. Terry Halpin
Director of Database Strategy, Visio Corporation

This paper first appeared in the April 1999 issue of the Journal of Conceptual Modeling, published by
InConcept.

This paper is the eighth in a series of articles examining data modeling in the Unified
Modeling Language (UML) from the perspective of Object Role Modeling (ORM). Part 1
discussed historical background, design criteria for modeling languages, object reference
and single-valued attributes. Part 2 covered multi-valued attributes, basic constraints,
and instantiation using UML object diagrams or ORM fact tables. Part 3 compared UML
associations and related multiplicity constraints with ORM relationship types and related
uniqueness, mandatory role and frequency constraints, as well as how associations may be
instantiated. Part 4 contrasted ORM nesting with UML association classes, ORM co-
referencing with UML qualified associations, and ORM exclusion constraints with UML
or-constraints. Part 5 discussed subset and equality constraints. Part 6 discussed
subtyping. Part 7 discussed value, ring and join constraints. Part 8 covers some recent
updates to the UML standard, then discusses aggregation.

Updates to the UML standard

Recently Visio became a member of the Object Management Group (OMG), and began
participating in the ongoing work to refine the UML standard. Within the OMG, the UML
standard is the responsibility of the Analysis and Design Task Force (ADTF, formerly
OOA&DTF), chaired by Jim Odell and Cris Kobryn. Minor changes to the UML standard
that lead to point releases (e.g. 1.1, 1.2, 1.3) are managed by a subgroup of the ADTF
known as the UML RTF (Revision Task Force), chaired by Cris Kobryn. The latest release
of UML (version 1.2) is fully supported by Visio Enterprise, including all nine diagram
types. Currently, the UML RTF is working on a draft of version 1.3, and some further
point releases might be considered later (e.g. version 1.4). The next major release (2.0) is
not expected to be forthcoming from the ADTF for quite some time (e.g. late 2001). As a
result of recent email discussions and meetings of the UML RTF team, several revisions to
the UML 1.3 draft have been made, including two that I will comment on here, since they
relate to issues discussed in earlier articles in this series.

UML data models from an ORM perspective (part 8) 2

The “{or}” constraint discussed in Part 4 of this series has been renamed “{xor}” (short
for “exclusive or”), and has been redefined to mean exactly one of the association roles is
chosen. This means it is equivalent to ORM’s exclusive-or constraint, which is a
combination of a disjunctive mandatory role constraint and an exclusion constraint. For
example, consider the following constraint

(1) each Vehicle is either leased from a Company or was purchased from a Company, but
not both.

In ORM, this may be expressed by the following two constraints:

(2) each Vehicle is leased from a Company or was purchased from a Company.
(3) no Vehicle is leased from a Company and was purchased from a Company.

Constraint (2) is a disjunctive mandatory role constraint, shown as a black dot on the
object type connected to the two roles, or by a circled black dot “�” connected to the
roles. Constraint (3) is an exclusion constraint, shown as a circled ex “⊗ ” connecting the
two roles. The constraints are orthogonal, and may be shown either separately as in
Figure 1(a) or by combining the two symbols as in Figure 1 (b).

Figure 1: Exclusive-or constraint depicted in ORM using (a) separate or (b) combined symbols

In UML, the constraint is displayed by connecting the relevant association-ends (roles
in ORM) by a dashed line, labeled “{xor}” (see Figure 2). Although the current wording of
the UML standard describes the constraint as applying to a set of associations, we need to
apply the constraint to a set of association-ends to avoid ambiguity in cases like this with
multiple common classes. Visually this could be shown by attaching the dashed lines near
the relevant ends of the associations, as we have done here.

Figure 2: Exclusive-or constraint depicted in UML

Vehicle Company

is leased from

was purchased from

Vehicle Company

is leased from

was purchased from

(a) (b)

Vehicle Company{xor}

Is-leased-from

Was-purchased-from

*

*

0..1

0..1

UML data models from an ORM perspective (part 8) 3

As discussed in previous issues, UML has no symbols for exclusion or disjunctive
mandatory role constraints. If ever UML symbols for these constraints are considered,
then “{x}” and “{or}” respectively seem appropriate—this choice also exposes the
composite nature of “{xor}”. Even if such a proposal were accepted as a UML extension,
this would capture only a fragment of ORM’s expressive power in this area—recall that
ORM’s exclusion constraint applies not just to a set of roles, but a set of role-sequences,
and hence is far more general than the kind of case considered here. Moreover, ORM roles
include unary predicates, and ORM needs no additional notations to constrain attributes.

The second proposed revision to UML concerns the semantics of the “{complete}”
constraint for subtyping. This constraint, discussed in Part 6, was formerly described as
indicating that the modeler intended to add no more subtypes. This weak notion of
completeness does not entail that the constrained subtypes collectively exhaust the
supertype, but this latter notion is far more useful in practice and is called a totality
constraint in ORM. Although typically implied by other constraints, a totality constraint
may be explicitly depicted in ORM by connecting the mandatory symbol “�” to the
relevant subtype links (it is mandatory for each instance of the supertype to be an instance
of at least one of the subtypes). Hence the supertype equals the union of the constrained
subtypes. Recall that a type is the set of all possible instances, while a population is the set
of current instances. The practical way to enforce the constraint is to check that for each
state of the database, the population of the supertype equals the union of the populations
of the constrained subtypes. At the UML RTF meeting in March it was agreed that the
UML notion of subtype completeness would be redefined as this set-theoretic notion, thus
making it equivalent to ORM’s subtype totality constraint. With this understanding, the
ORM and UML schemas in Figure 3 are equivalent.

Figure 3: The subtype totality constraint A = B ∪ C expressed in (a) ORM and (b) UML.

Aggregation

In UML, the term “aggregation” is used to describe a whole/part relationship. For
example, a team of people is an aggregate of its members, so this membership may be
modeled as an aggregation association between Team and Person. Several different forms
of aggregation might be distinguished in real world cases. For example, Jim Odell and
Conrad Bock discuss the following six varieties of aggregation: component-integral;
material-object; portion-object; place-area; member-bunch; and member-partnership [4, 5].
Currently, UML associations are classified into one of three kinds: ordinary association

A

B C D

A

B C D

{complete}

(a) (b)

UML data models from an ORM perspective (part 8) 4

(no aggregation); shared (or simple) aggregation; composite (or strong) aggregation.
Hence UML version 1.x recognizes only two varieties of aggregation: shared and
composite. Although early planning for UML version 2.x foreshadows further kinds of
aggregation being introduced, we confine our attention here to shared and composite
aggregation. Some versions of ER include an aggregation symbol (typically only one
kind). ORM, as well as many versions of ER, includes no special symbols for aggregation.

These different stances with respect to aggregation are somewhat reminiscent of the
different modeling positions with respect to null values. Although over twenty kinds of
null have been distinguished in the literature, the relational model recognizes only one
kind of null, Codd’s version 2 of the relational model proposes two kinds of null, and
ORM argues that nulls have no place in base conceptual models (because all its base facts
are elementary). But let’s return to the topic at hand.

Shared aggregation is denoted in UML as a binary association, with a hollow
diamond at the “whole” or “aggregate” end of the association. Composition (composite
aggregation) is depicted with a filled diamond. For example, Figure 4 depicts a
composition association from Club to Team, and a shared aggregation association from
Team to Person.

Figure 4: Composition (composite aggregation) and shared aggregation in UML

In ORM, this situation would be modeled as shown in Figure 5. As we see, ORM has
no special notation for aggregation. Does Figure 4 convey any extra semantics, not
captured in Figure 5? At the conceptual level, it is doubtful whether there is any
additional useful semantics. At the implementation level however, there is additional
semantics. Let’s discuss this in more detail.

Figure 5: The Figure 4 example modeled in ORM

The UML standard declares that “both kinds of aggregation define a transitive …
relationship” [6]. The use of “transitive” here is somewhat misleading, since it refers to
indirect aggregation associations rather than base aggregation associations. For example,
if Club is an aggregate of Team, and Team is an aggregate of Person, it follows that Club
is an aggregate of Person. However if we wanted to discuss this result, it should be
exposed as a derived association. In UML, derived associations are indicated by prefixing
their names with “/”. The derivation rule can be expressed as a constraint, either
connected to the association by a dependency arrow, or simply placed beside the
association as in Figure 6.

Club Team Person
1 * * *

Club Team Person

has / is in includes / is in

UML data models from an ORM perspective (part 8) 5

Figure 6: A derived aggregation in UML

In ORM, derived fact types may be diagrammed by marking them with an asterisk,
and derivation rules may be specified in an ORM textual language such as ConQuer (see
Figure 7). In many cases, derivation rules may also be diagrammed as a join-subset or
join-equality constraint. As this example illustrates, the derived transitivity of
aggregations can be captured in ORM without needing a special notation for aggregation.

Figure 7: The derived aggregation of Figure 6 modeled in ORM

More fully, the UML standard declares that “both kinds of aggregation define a
transitive, antisymmetric relationship (i.e. the instances from a directed, non-cyclic
graph)” [6]. Recall that a relation R is antisymmetric if and only if, for all x and y, if x is
not equal to y then xRy implies that yRx. It would have been better to simply state that
paths of aggregations must be acyclic. At any rate, this rule is designed to stop errors such
as that shown in Figure 8. If a person is part of a team, and a team is part of a club, it
doesn’t make sense to say that a club is part of a person.

Figure 8: Illegal UML model. Aggregations should not form a cycle.

Since ORM does not specify whether an association is an aggregation, illegal
diagrams like this can’t occur in ORM. Of course, it is possible for an ORM modeler to
make a silly mistake by adding an association such as Club is part of Person, where “is part

Club Team Person
1 * * *

/Includes

**

team member

member

{ Club.member = Club.team.member }

Club Team Person

has / is in includes / is in

includes *

* define Club includes Person as
 Club has a Team that includes Person

Club Team Person
1 * * *

**

UML data models from an ORM perspective (part 8) 6

of” was informally understood in the aggregation sense, and this would not be formally
detectable. But avoidance of such a bizarre occurrence doesn’t seem to be a compelling
reason to add aggregation to ORM’s formal notation. There are plenty of associations
between Club and Person that do make sense, and plenty that don’t. In some cases
however, it is important to assert constraints such as acyclicity, and this is handled in
ORM by ring constraints (see Part 7).

Composition does add some important semantics to shared aggregation. To begin
with, it requires that each part belongs to at most one whole at a time. In ORM, this is
captured by adding a uniqueness constraint to the role played by the part (e.g. see the role
played by Team in Figure 5). In UML, the multiplicity at the whole end of the association
must be 1 or 0..1. If the multiplicity is 1 (as in Figure 4), the role played by the part is both
unique and mandatory (as in Figure 5). As an example where the multiplicity is 0..1 (i.e.
where a part optionally belongs to a whole), consider the ring fact type of Figure 9:
Package contains Package. Here “contains” is used in the sense of “directly contains”. The
UML standard notes that “composition instances form a strict tree (or rather a forest)” [6].
This strengthening from directed acyclic graph to tree is an immediate consequence of the
functional nature of the association (each part belongs to at most one whole), and hence
ORM requires no additional notation for this. In this example, the ORM model explicitly
includes an acyclic constraint. Note that this direct containment association is intransitive
by implication (acyclicity implies irreflexivity, and any functional, irreflexive association
is intransitive).

Figure 9: Direct containment modeled in (a) UML and (b) ORM

UML allows some alternative notations for aggregation. If a class is an aggregate of
more than one class, the association lines may be shown joined to a single diamond (see
Figure 10(a)). For composition, the part classes may be shown nested inside the whole by
using role names, and multiplicities of components may be shown in the top right hand
corners (see Figure 10(b)).

Package

0..1 *

(a) (b) Package

contains / is contained inContains�

°ac

UML data models from an ORM perspective (part 8) 7

Figure 10: Alternative UML notations for aggregation

Some authors list kinds of association that are easily confused with aggregation but
should not be modeled as such (e.g. topological inclusion, classification inclusion,
attribution, attachment and ownership [4, 5]). For example, Finger belongs to Hand is an
aggregation, but Ring belongs to Finger is not. There is some disagreement among authors
about what should be included on this list. For example, attribution is treated by some as
a special case of aggregation (a composition between a class and the classes of its
attributes) [7]. My own viewpoint is that for conceptual modeling purposes, agonizing
over such distinctions doesn’t seem to be worth the trouble. This position seems to be
taken by some other authors. For example, [7, p. 148] argues that “Aggregation conveys
the thought that the aggregate is inherently the sum of its parts. In fact, the only real
semantics that it adds to association is the constraint that chains of aggregate links may
not form cycles … Some authors have distinguished several kinds of aggregation, but the
distinctions are fairly subtle and probably unnecessary for general modeling”.

Indeed there seems little justification for introducing the notion of aggregation at all
as a separate concept at the conceptual level. There are plenty of other distinctions (apart
from aggregation) we could make about associations, but we don’t feel compelled to do
so. At the implementation level however, composite aggregation does add important
semantics. “A composite implies propagation semantics … For example, if the whole is
copied or deleted, then so are the parts as well” [6]. Clearly this dynamic semantics has
nothing to do with a conceptual view of the domain area, and it would be unreasonable to
introduce this notion when validating the business model with the subject matter expert.
However, once a decision is made to implement the conceptual model in an object-
oriented system, it is important to capture this semantics. One way of doing this would be
to convert a conceptual ORM model to a UML model, and then add aggregation at that
stage.

Obviously there are different stances one could take about how, if at all, aggregation
should be included in the conceptual modeling phase. My position is one of many. You
can decide what’s best for you.

Book

TextBody Index

1

Book

chapter: TextBody

index: Index
chapter index

1..*

1..* 0..1
0..1

(a) (b)

UML data models from an ORM perspective (part 8) 8

Later issues

Later issues will discuss default values, changeability settings, derived data, derivation
rules and queries in ORM and UML.

References

1. Booch, G., Rumbaugh, J. & Jacobson, I. 1999, The Unified Modeling Language User Guide,
Addison-Wesley, Reading MA, USA.

2. Blaha, M. & Premerlani, W. 1998, Object-Oriented Modeling and Design for Database
Applications, Prentice Hall, New Jersey.

3. Halpin, T. 1995, Conceptual Schema and Relational Database Design, 2nd edn (revised 1999),
WytLytPub, Bellevue WA, USA.

4. Martin, J. & Odell, J. 1998, Object-Oriented Methods: a Foundation, UML edn, Prentice Hall,
Upper Saddle River, New Jersey. { Ch. 18 discusses aggregation }

5. Odell, J. 1998, Advanced Object-Oriented Analysis & Design using UML, Cambridge
University Press, & SIGS Books, New York. { Part V (pp. 137-65) discusses aggregation }

6. OMG-UML 1.3 draft, OMG UML Revision Task Force website,
http://uml.systemhouse.mci.com/.

7. Rumbaugh, J., Jacobson, I. & Booch, G. 1999, The Unified Modeling Language Reference
Manual, Addison-Wesley, Reading MA, USA.

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

