
UML data models from an ORM perspective (part 9) 1

UML data models from an ORM perspective:
Part 9
by Dr. Terry Halpin
Director of Database Strategy, Visio Corporation

This paper first appeared in the June 1999 issue of the Journal of Conceptual Modeling, published by
InConcept.

This paper is the ninth in a series of articles examining data modeling in the Unified
Modeling Language (UML) from the perspective of Object Role Modeling (ORM). Part 1
discussed historical background, language design criteria, object reference and single-
valued attributes. Part 2 covered multi-valued attributes, basic constraints, and
instantiation using UML object diagrams or ORM fact tables. Part 3 compared UML
associations and related multiplicity constraints with ORM relationship types and related
uniqueness, mandatory role and frequency constraints, as well as how associations may be
instantiated. Part 4 contrasted ORM nesting, co-referencing and exclusion constraints
with UML association classes, qualified associations, and xor-constraints respectively.
Part 5 discussed subset and equality constraints. Part 6 discussed subtyping. Part 7
discussed value, ring and join constraints. Part 8 listed some recent updates to the UML
standard, then discussed aggregation. Part 9 examines initial values and derived data in
ORM and UML.

Initial values

The syntax of an attribute specification in UML includes six components as shown below.
Square and curly brackets are used literally here as delimiters (not as BNF symbols to
indicate optional components).

visibililty name [multiplicity] : type-expression = initial-value {property string}

If an attribute is displayed at all, its name is the only thing that must be shown. The
visibility marker (+, #, − denote public, protected, and private respectively) is an
implementation concern, and will be ignored in our discussion. Multiplicity has been
discussed earlier and is specified for attributes in square brackets, e.g. [1..*]. For attributes,
the default multiplicity is 1, i.e. [1..1]. The type expression indicates the domain on which
the attribute is based (e.g. String, Date). Initial-value and property string declarations may

UML data models from an ORM perspective (part 9) 2

optionally be declared. Property strings may be used to specify changeability (see next
article in this series). We now turn to a consideration of initial values.

An attribute may be assigned an initial value by including the value in the attribute’s
declaration after an equals sign (e.g. diskSize = 9; country = USA; priority = normal). The
language in which the value is written is an implementation concern. In Figure 1, the
nrColors attribute is based on a simple domain (e.g. PositiveInteger) and has been given an
initial value of 1. The resolution attribute is based on a composite domain (e.g. PixelArea)
and has been assigned an initial value of (640,480).

Figure 1: Attributes may be assigned initial values in UML

Unless over-ridden by another initialization procedure (e.g. a constructor), declared
initial values are assigned when an object of that class is created. This is at least similar to
the database notion of default values, where during the insertion of a tuple an attribute
may be assigned a predeclared default value if a value is not supplied by the user.
However UML uses the term “default value” in other contexts only (e.g. template and
operation parameters) [0], and some authors claim that default values are not part of UML
models [0, p. 249]. The SQL standard treats null as a special instance of a default value,
and this is supported in UML, since the standard notes that “a multiplicity of 0..1 provides
for the possibility of null values: the absence of a value” [0, p. 3-41]. So an optional
attribute in UML can be used to model a feature that will appear as a column with the
default value of null, when mapped to a relational database. Presumably a multiplicity of
[0..*] or [0..n] for any n > 1 also allows nulls for multi-valued attributes, even though an
empty set could be used instead.

Currently, ORM does not provide explicit support for initial/default, values.
However UML initial values and relational default values could be supported by allowing
default values to be specified for ORM roles. At the meta-level, we add the fact type: Role
has default- Value. At the external level, instances of this could be specified on a predicate
properties sheet, or even entered on the schema diagram (e.g. by attaching an annotation
such as d: value to the role, and preferably allowing this display to be toggled on/off). SQL
default values are simple, so their source ORM roles need to be played by a simply
identified object type. For example, the role played by NrColors in Figure 2 has been
allocated a default value of 1. When mapped to SQL-92, this should add the declaration
“default 1” to the column definition for ClipArt.nrColors.

To support the composite initial values allowed in UML, composite default values
could be specified for ORM roles played by compositely identified object types (co-
referenced or nested). When co-referencing involves at least two roles played by the same
or compatible object types, an order is needed to disambiguate the meaning of the
composite value. For example, in Figure 2 the role played by Resolution has been assigned

pictureNr {P}
topic
nrColors = 1
resolution = (640,480)

ClipArt

UML data models from an ORM perspective (part 9) 3

a default composite value of (640,480). To ensure that the 640 applies to the horizontal
pixelcount and the 480 applies to the vertical pixelcount (rather than the other way
round), this ordering needs to be applied to the defining roles of the external uniqueness
constraint. In VisioModeler, this ordering is determined by the order in which the roles
are selected when entering this constraint; although the display of this order is normally
suppressed, the order can be displayed by right-clicking the constraint and choosing
SelectRoleSequence from the pop-up menu.

Figure 2: A possible extension to ORM to capture simple and composite default values

If all or most roles played by an object type have the same default, it may be useful to
allow a default value to be specified for the object type itself. This could be supported in
ORM by adding the meta-fact-type ObjectType has default- Value, and proving some
notation for instantiating it (e.g. by an entry in the Object Type Properties sheet, or by
annotating the object type ellipse with d: value). This corresponds to the default clause
permitted in a create-domain statement in SQL-92. Note that an object-type default can
always be expressed instead by role-based defaults, but not conversely (since the default
may vary with the role).

Specification of default values does not cover all the cases that can arise with regard to
default information in general. A detailed proposal for providing greater support for
default information in ORM is discussed in [0], but this goes beyond the built-in support
for defaults in either UML or SQL. Default information can be modeled informally by
using a predicate name to convey this intention to a human. For example, we might
specify default medium (e.g. ‘CD’, ‘DVD’, ‘T’) preferences for delivery of soft products
(e.g. music, video, software) using the 1:n fact type: Medium is default preference for
SoftProduct. In cases like this where default values overlap with actual values, we may
also wish to classify instances of relevant fact types as actual or default (e.g. Shipment
used Medium). For the typical case where the uniqueness constraint on the fact type spans
n-1 roles, this can be achieved by including fact types to indicate the default status (e.g.
Shipment was based on Choice {actual, default}), resulting in extra columns in the database
to record the status. While this approach is generic, it requires the modeler and user to
take full responsibility for distinguishing between actual and default values.

ClipArt
(nr)

Topic
(name)

illustrates

NrColors+has

d: 1

Resolution

d: (640,480)

has PixelCount+u

has horizontal-

has vertical-

UML data models from an ORM perspective (part 9) 4

Derived data

In UML, derived elements (e.g. attributes, associations or association-roles) are indicated
by prefixing their names with “/”. Optionally, a derivation rule may be specified as well.
The derivation rule can be expressed as a constraint or note, connected to the derived
element by a dashed line. This line is actually shorthand for a dependency arrow,
optionally annotated with the stereotype name «derive». Since a constraint or note is
involved, the arrow-tip may be omitted (the constraint or note is assumed to be the
source). For example, Figure 3 includes area as a derived attribute.

Figure 3: Area depicted as a derived attribute in UML, with derivation rule declared in a note

The dependency line may also be omitted entirely, with the constraint shown in
braces beside the derived element (in this case, it is the modeling tool’s responsibility to
maintain the graphical linkage implicitly). A club-membership example of this was
included in Part 8 of this series. As another example, Figure 4 expresses uncle information
as a derived association. For illustration purposes, rolenames have been included for all
association ends. Although precise rolenames are not always elegant, the use of rolenames
in derivation rules corresponding to a path projection can facilitate concise expression of
rules, as shown here. More complex derivation rules can be stated informally in English
or formally in a language such as the Object Constraint language (OCL) [0].

Figure 4: Derived uncle association (and roles) in UML, with derivation rule declared as a constraint

In ORM, a fact type that is primitive (i.e. not defined in terms of others) is said to be a
base fact type. Derived fact types are defined in terms of other fact types (base or derived).
If displayed on a diagram, derived fact types are marked with an asterisk. Constraints on
derived fact types are typically implied. Whether or not a fact type is displayed on a
diagram, a rule for deriving it should be declared. For example, Figure 5 includes a
derivation rule to define the fact type Window has Area. The rule is specified here using
ConQuer, an ORM conceptual query language supported in Visio’s ActiveQuery tool. A

Person

/UncleOf �
{ Person.uncle = Person.parent.brother }

parent child
0..2 *

*

* brother

sibling_with_brother

/uncle
**
/niece_or_nephew

 windowNr {P}
 height
 width
 /area

Window

{area = height * width }

UML data models from an ORM perspective (part 9) 5

comment in braces has been prepended to the formal definition. Although automatic
translation from ConQuer to SQL is provided in ActiveQuery, VisioModeler does not
currently support this, so it is the developer’s responsibility to implement any derivation
rules entered in predicate property sheets.

An alternative ORM syntax for derivation rules uses “… iff …” (if and only if) instead
of “define … as …”. This syntax is useful if we wish to declare the underlying constraint
before deciding which fact type is to be the definiendum (what is required to be defined).
For example, the following logical constraint involves three fact types with one degree of
freedom:

Window has Area iff Window has height of Length1 and
Window has width of Length2 and
Area = Length1 * Length2.

Any one of the fact types could be chosen to be derived from the other two. Given
height and width, we can compute area; given area and height, we can compute width;
and given area and width, we can compute height. Listing the area fact type before the
“iff” doesn’t conceptually require us to make that the derivable one. However, once the
definiendum has been selected, it should be written as the head of the definition. In cases
like this, where there really is a choice as to which is the definiendum, the decision is often
based more on performance than on conceptual issues. In many cases however, there
simply is no choice. For example, facts about sums and averages are derivable from facts
about individual cases, but except for trivial cases we cannot derive the individual facts
from such summaries.

Figure 5 Window area depicted in ORM using a derived fact type with its derivation rule

It is an implementation issue whether a derived fact type is derived-on-query (lazy
evaluation) or derived-on-update (eager evaluation). In the former case, the derived
information is not stored, but computed only when the information is requested. For
example, if our Window schema is mapped to a relational database, no column for area is
included in the base table for Window (see Figure 6(a)). The rule for computing area may
be included in a view definition or stored query, and is invoked only when the view is

Window
(nr)

Length
(cm)+

has

has width of

has height of

Area
(sq_cm)+

*
* { area = height x width }
 define Window has Area(sq_cm)
 as
 Window has height of Length1 and
 Window has width of Length2 and
 Area = Length1 * Length2

UML data models from an ORM perspective (part 9) 6

queried or the stored query is executed. In most cases, lazy evaluation is preferred (e.g.
computing a person’s age from their birthdate and current date).

Sometimes eager evaluation is chosen because it offers significantly better
performance (e.g. computing account balances). In this case, the information is stored as
soon as the defining facts are entered, and updated whenever they are updated. In
VisioModeler this option is chosen by selecting “Derived and Stored” from the Derived
pane of the predicate properties sheet. As a sub-conceptual annotation, VisioModeler uses
a double-asterisk “**” to indicate this choice. When the schema is mapped to a relational
database, a column is created for the derived fact type (e.g. see Figure 6(b)), and the
computation rule should be included in a trigger that is fired whenever the defining
columns are updated (including inserts or deletes).

 (a)

 (b)

Figure 6 As an implementation issue, derived fact types may be evaluated lazily (a) or eagerly (b)

Some but not all derivations can be modeled graphically in ORM using equality
constraints. In other cases, a fact type may be partly base and partly derived. These are
sometimes called hybrid fact types. Although a notation has been suggested for them [0, p.
56], this is not yet included in UML. Some hybrid fact types may be handled in ORM
using a subset constraint, e.g. see [0, p. 239]. As an example of a hybrid fact type, suppose
that we know somebody’s uncles but not his/her parents, and we wish to record this
information about uncles. In this case, some uncle facts may be derived (as discussed
earlier) while others must be entered directly. One way of dealing with this is to stored
the entered facts in a base uncle fact type, separate from the derived fact type discussed
earlier, which might be renamed, and specify the disjunction of these two fact types as
another derived fact type.

Window
windowNrPK
height
width

Window
windowNrPK
height
width
area

has height of

Window
(nr)

Length
(cm)+

has width of

**
has Area

(sq_cm)+

has height of

Window
(nr)

Length
(cm)+

has width of

*
has Area

(sq_cm)+

UML data models from an ORM perspective (part 9) 7

We have seen that UML and ORM both provide support for derived information. As
the examples illustrate, the use of attributes and association role names in UML often
enables derivation rules to be expressed concisely using a functional notation. In contrast,
the predicate-based derivation rules of ORM may appear somewhat verbose, especially
for derivations of a mathematical rather than logical nature. While it is easy to come up
with ORM derivation rules that are neater than the corresponding UML rules, the
functional style of UML is definitely more convenient in many cases. To address this
reality, ORM now allows rolenames as well as predicate names, and ConQuer has been
enhanced to support this alternative notation. The main advantage of ORM’s predicate-
based notation is that it is more stable than an attribute-based notation, since it is not
impacted by schema changes such as attributes being remodeled as associations. So the
choice of a functional or relational style for derivation rules can involve a trade-off
between convenience and stability.

Next issue

The next article in this series will discuss changeability and collection types in UML and ORM.

References

Booch, G., Rumbaugh, J. & Jacobson, I. 1999, The Unified Modeling Language User Guide,
Addison-Wesley, Reading MA, USA.

Halpin, T. 1995, Conceptual Schema and Relational Database Design, 2nd edn (revised 1999),
WytLytPub, Bellevue WA, USA.

Halpin, T.A. & Vermeir, D. 1997, ‘Default reasoning in information systems’, Database
Applications Semantics, Chapman & Hall, London, pp. 423-41.

Martin, J. & Odell, J. 1998, Object-Oriented Methods: a Foundation, UML edn, Prentice Hall, Upper
Saddle River, New Jersey.

OMG-UML Specification v. 1.3 beta R6 draft, OMG UML Revision Task Force website,
http://uml.systemhouse.mci.com/artifacts.htm.

Rumbaugh, J., Jacobson, I. & Booch, G. 1999, The Unified Modeling Language Reference Manual,
Addison-Wesley, Reading MA, USA.

Warmer, J. & Kleppe, A. 1999, The Object Constraint Language: precise modeling with UML,
Addison-Wesley, Reading MA, USA.

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

